1	
2	
3	
4	
5	
6	FORMER NEBRASKA ORDNANCE PLANT
7	RESTORATION ADVISORY BOARD
8	BOARD MEETING
9	HELD IN MEAD, NEBRASKA
10	DATE: MARCH 23, 2006
11	TIME: 7:00 P.M.
12	
13	
14	Reported by Cynthia A. Craig Videographed by John Thomas
15	viacojiapilou za obili ilioliaz
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

```
1 GARTH ANDERSON: Welcome to the -- a
```

- 2 special version of the restoration advisory board
- 3 here for the former Nebraska Ordnance Plant site.
- 4 Appreciate everyone coming out in spite of
- 5 the weather, I know it's kind of thawed a little
- 6 bit, and -- but glad you could persevere.
- 7 MELISSA KONECKY: I had something I wanted
- 8 to say before we start.
- 9 VIDEOGRAPHER: Use the microphone.
- 10 GARTH ANDERSON: Can we just go through
- 11 something real quick, Ms. Konecky? We want to make
- 12 sure that we -- everyone knows the rules of -- you
- 13 know, with the transcriptionist and --
- MELISSA KONECKY: Oh, yes, these are --
- 15 that's -- well, the rules with the transcriptionist
- 16 aren't included in this, but some of the rules are.
- 17 GARTH ANDERSON: I'm also going to give
- 18 you a microphone.
- 19 MELISSA KONECKY: This won't take long.
- 20 I'm Melissa Konecky.
- 21 I'm Melissa Konecky, I'm the community
- 22 co-chair for the RAB. I just wanted to say that I'm
- 23 glad you guys could all come tonight to the special
- 24 meeting.
- 25 After several requests of the Kansas City

1 Corps, they finally agreed to this special meeting

- 2 to just specifically discuss the three groundwater
- 3 models: The MUD 2004 groundwater model, MUD's 2005,
- 4 and the Corps' own site model.
- 5 And actually the Corps had agreed to have
- 6 a special meeting for the -- for the groundwater
- 7 model back in November of 2004. Richard McCollum
- 8 agreed to it and Natalae Tillman in August of 2005.
- 9 So that's what this meeting is about, just
- 10 the groundwater models, and if you could hold your
- 11 questions about other topics until two weeks from
- 12 tonight, April 6th, we're going to meet here again
- 13 at 7 o'clock for just a regular RAB meeting. So
- 14 we'd appreciate it if you could hold your questions
- 15 until then, I mean about other topics.
- We're going to ask the Kansas City
- 17 District to walk us through each of their specific
- 18 comments regarding MUD's 2004 model, and each of
- 19 their comments for MUD's 2005 model, and in addition
- 20 to discuss their own site model, and there's a lot
- 21 of information about those models that need
- 22 discussing.
- 23 And from the community's point of view,
- 24 personally I think it would be better if you have a
- 25 question if you could ask it when the topic arises

1 rather than holding it until the end, otherwise, you

- 2 know, people lose their train of thought, we don't
- 3 have that slide up in front of us and have to, you
- 4 know, search for it, and it might just be more time
- 5 efficient and get more questions answered if we
- 6 could just ask them as they come up, as the topic
- 7 comes up.
- 8 And so I guess that was about it, so
- 9 anyway, well, we'll get some answers this evening,
- 10 so thank you.
- 11 GARTH ANDERSON: Thank you, Ms. Konecky.
- 12 Let's bring up the first slide, and let's
- 13 run through the agenda real quick, please.
- 14 First some introductions and
- 15 administrative items, then we'll review the actual
- 16 agenda.
- We have a presentation by the
- 18 U.S. Geological Survey on concepts of groundwater
- 19 modeling, just make sure everyone has a -- for the
- 20 same level understanding of what groundwater
- 21 modeling is all about.
- 22 And a question-and-answer period, we'll --
- 23 as we go through the presentation, it'd be better if
- 24 we could hold questions until that -- until the end,
- 25 but as Ms. Konecky said, you may have a question

1 that arises, but we would like to be able to let our

- 2 presenters get through their topics as best they
- 3 can.
- 4 Slide.
- 5 First introductions: You met Ms. Konecky,
- 6 the community co-chair; I'm the army co-chair,
- 7 Garth Anderson, I'm from the Corps of Engineers'
- 8 Kansas City office; and then we'll go through some
- 9 other restoration advisory board members.
- 10 Our active members of the board are
- 11 Ms. Konecky and John Wageman, who's not here
- 12 tonight, and then we have a number of inactive
- 13 members that we haven't seen in a while.
- 14 We have some agency members that are here
- 15 tonight. The primary ones are Mr. Scott Marquess,
- 16 the Environmental Protection Agency, and
- 17 Mr. Larry Angle of the Lower Platte Natural
- 18 Resources District.
- 19 A couple other folks from the Kansas City
- 20 District, Ms. Natalae Tillman and Jason Leibbert, who
- 21 will be doing most of the featured speaking, and
- 22 also Mr. Tom O'Hara from their Kansas City office as
- 23 well.
- 24 Scott Marquess: Garth?
- 25 GARTH ANDERSON: Yes.

1 NEW SPEAKER: I want to introduce

- 2 Bryan Rundell. He's -- he works for Tech
- 3 Law, which is a consulting firm that supports --
- 4 provides technical support to EPA on matters like
- 5 groundwater modeling, so he's up here to help me.
- GARTH ANDERSON: We do have three
- 7 gentlemen from the U.S. Geographical Survey,
- 8 Mr. Greg Steele, who will be doing the main
- 9 presentation, Rick Wilson and Mr. Swanson, who's --
- 10 who -- I guess you oversee both these guys, right?
- 11 MR. SWANSON: Correct.
- 12 GARTH ANDERSON: Excellent.
- 13 Okay. We're -- we scheduled this meeting
- 14 until 9 o'clock, I think we'd all like to get out of
- 15 here by then so we'll try to keep our discussions
- 16 focused and on the topic.
- 17 Try to just ask one question at a time.
- 18 We will have microphones that are going to be coming
- 19 around, so please have a microphone in hand before
- 20 you ask your question; and when you do ask a
- 21 question or make a statement please state your name
- 22 so our court reporter can get it down in the
- 23 transcript.
- 24 Again, let's try to respect each other,
- 25 keep it civil and listen to what everyone has to

- 1 say. Slide.
- 2 Just in case you hadn't figured it out by
- 3 my gesturing up here, the meeting is being both
- 4 videotaped -- actually, it's going on DVD, not
- 5 videotape anymore, we've gone to the next level, and
- 6 we have a court reporter who is -- will be providing
- 7 the written transcript of the meeting.
- 8 Again, I just want to keep emphasizing
- 9 stating your name because the video transcriptionist
- 10 will call you out if you don't say your name, make
- 11 you say your name, and to include me, I'm probably
- 12 the worse offender, so he has my permission to smack
- 13 me but only remind you guys.
- 14 We do have a mailing list. If you haven't
- 15 signed in I urge you to do so so that we make sure
- 16 our mailing list is accurate, and I've been
- 17 compiling an e-mail list.
- 18 I've been sending lots of stuff out by
- 19 e-mail lately because I think a lot of folks are
- 20 moving toward that, and it's a pretty efficient way
- 21 to disseminate some information, so if you're not
- 22 getting a letter from me for these meetings please
- 23 let me know so I can include you in the hard copy
- 24 mailing.
- 25 Slide.

```
1 We do have a web site, project web site;
```

- 2 it's getting better. We're posting information on
- 3 there, it's -- we also find that it's a good tool to
- 4 disseminate information to everybody in the
- 5 community.
- 6 We'll post the transcript of this meeting,
- 7 the slides, and sampling data when it becomes
- 8 available; it'll all be right there on the web site,
- 9 and I already talked about the e-mail list. Slide.
- 10 Okay. Again, the agenda, we're going to
- 11 start with USGS just to talk about some groundwater
- 12 modeling concepts; I won't steal his thunder, then
- 13 we'll talk a little bit about our own groundwater
- 14 model, the one we use to manage the site and do our
- 15 pumping and containment.
- Then we'll talk about our review of the
- MUD model, the 2004 and 2005 models, and then
- 18 questions and answers, and hopefully we'll be out of
- 19 here by 9 o'clock.
- 20 Slide.
- Okay. At this time we'll go ahead and
- 22 start with USGS who'll walk us through some concepts
- 23 of groundwater modeling.
- 24 GREG STEELE: Hello, my name is
- 25 Greg Steele, I'm with US -- there we go, I hope

- 1 that's a little bit better.
- 2 My name is Greg Steele, I'm with the USGS,
- 3 I work in, Lincoln, Nebraska office, for the
- 4 Nebraska Water Science Center. I've worked there
- 5 about 22 years on different aspects of hydrology,
- 6 from surface water, groundwater, water quality.
- 7 I originally started groundwater modeling
- 8 when -- back in the days when computers had punch
- 9 cards, so that goes way back into the '80s, and I've
- 10 progressed up through the -- up through the computer
- 11 models along with -- with the computers and the
- 12 speed of the computers and all that, so I do have
- 13 extensive experience in all kinds of fields related
- 14 to the hydrology of groundwater.
- Go ahead, please.
- 16 Today -- or tonight I should say, I'm
- 17 going to give a -- an outline for the overview of
- 18 groundwater modeling, and then I'm going to give
- 19 some various approaches to the groundwater modeling,
- 20 and then I'm going to give some examples of
- 21 groundwater modeling.
- Now, these examples themselves are going
- 23 to be more of the Cliff Notes type examples; I'm
- 24 just going to give you a brief overview for time
- 25 sake.

- 1 Go ahead and advance, please.
- 2 But first I'd like to introduce the USGS
- 3 to you. I'm not trying to make this a dog and pony
- 4 show at all, but just to exactly tell you who we are
- 5 and why we're here.
- 6 The USGS serves the nation by providing
- 7 reliable scientific information, and the first
- 8 bullet here is to describe and understand the earth
- 9 along with the minimized loss of life and managed
- 10 water resources enhanced to protect the quality of
- 11 life.
- 12 Our vision is to be a world leader in the
- 13 natural sciences through scientific excellence and
- 14 responsiveness to society's needs, and society's
- 15 needs includes all of society's, U.S. citizens.
- Now, the strategic direction is to combine
- 17 and enhance, but I wanted to point out that the
- 18 scientific leadership and contribution to the
- 19 resolution of complex issues, and complex issues by
- 20 all means includes groundwater modeling.
- 21 So I'm going to continue on and hopefully
- 22 you have a little bit of who we are and what we are,
- 23 but above all we are -- we are a nonregulatory
- 24 agency. We do not regulate anybody or anything like
- 25 that, and we are a non-bias agency.

1 We collect the data, we analyze the data

- 2 and we give it to the people that need it so that
- 3 the managers can make the decisions that need to be
- 4 made.
- 5 In this outline -- and it would be nice if
- 6 you hold your questions to the end, but if you do
- 7 not then that's -- that's fine too.
- 8 I will address the concepts of groundwater
- 9 models, groundwater flow models, in particular MOD
- 10 FLOW, and that's the one that I'm familiar with
- 11 most, and that's the USGS groundwater model, and
- 12 then I'm going to give some examples as I mentioned
- 13 with groundwater models, and these are going to be
- 14 USGS models.
- What I will not talk about tonight is
- 16 existing groundwater models in the lower
- 17 Platte River Valley. I will not address the MUD
- 18 model, the Lincoln model or the Mead model. We have
- 19 not reviewed these models, these are not USGS
- 20 models, and so I cannot address these models.
- 21 So we need a way to evaluate problems.
- 22 Different approaches may require different tools
- 23 that you use, and the simplest tools are the
- 24 easiest, hence their name, excuse me.
- 25 And then you can press to more complex

- 1 tools, pardon me, but you need to consider the
- 2 trade-offs between the simple tools and the complex
- 3 tools.
- 4 What is the scientific question that you
- 5 you're trying to answer? What are you trying to
- 6 answer? The simplest tools are cheaper, but they're
- 7 also faster to run, so you have to think about time;
- 8 the complex tools are expensive and more time
- 9 intensive, and they have increased personnel costs,
- 10 so you need to have a -- an answer that is germane
- 11 to the question that you're asking.
- This diagram here shows--excuse me
- 13 again--a database development at the base, and that
- 14 is the data collection that you're -- that
- 15 everything above it is based on.
- So you have the geologic map models,
- 17 hydrostatic models, groundwater flow models; all
- 18 that building up to a quantitative understanding,
- 19 and it's an iterative process, I'm sorry. So it's
- 20 an iterative process that you go through, but you
- 21 need to collect the data to obtain everything.
- Go ahead, please.
- 23 So you have the simplest down here, the
- 24 geologic models, they can be land form train models,
- 25 whereas the hydrostatic graphic models can be the

- 1 definition of the aquifer, but the complex models
- 2 are the groundwater flow models, those are the ones
- 3 that I'll be talking about tonight.
- But, again, it's all in an effort to get a
- 5 quantitative understanding--and advance, please--for
- 6 your ultimate goal in resource management.
- 7 Okay. Go one more, please.
- Now, this is an analytical equation, this
- 9 is one of the simplest models that we have. This is
- 10 a stream depletion factor, SDF, and the analytical
- 11 equation method that the Nebraska Department of
- 12 Natural Resources used for the implementation of
- 13 LB962, which is the integrated management for the
- 14 surface water and groundwater.
- 15 And it's easy enough that you have a
- 16 distance, and then you have a couple of aquifer
- 17 properties, Storative or specific yield which
- 18 basically in simplistic terms is porosity, and then
- 19 a transmissivity is how easily the water moves
- 20 through the -- moves through the aquifer.
- 21 But it uses seven simplifying assumptions,
- 22 everything from a fully penetrating well to a fully
- 23 penetrating stream and other things like temperature
- 24 and stuff.
- There are seven simplifying assumptions;

- 1 all these are designed so that the depletion is
- 2 controlled by the transmissivity, the specific yield
- 3 and the distance, and so the aquifer itself is very
- 4 simplistic; however, the field conditions as Jacobson
- 5 had said are never fully idealized in the real world
- 6 using the above assumptions.
- 7 But the analytical equation, why do people
- 8 use them, they're relatively simple to use, they're
- 9 very easy. All you need is distance, you need a
- 10 transmissivity and you need a storage specific yield
- 11 factor.
- 12 Timewise they're not nearly as costly as a
- 13 numerical groundwater model, and I'll get into that,
- 14 what a numerical groundwater model is, after a bit.
- 15 And with the transmissivity and specific
- 16 yield maps, you can use this analytical equation to
- 17 map depletions over large areas for the -- using
- 18 GIS, and that's exactly what DNR did.
- 19 Go ahead.
- Now, you can also modify analytical
- 21 equations to reduce some of the assumptions, and
- 22 this is just some of the reports that have been
- 23 recently published in ground -- in the Journal of
- 24 Groundwater, such as a part -- accounting for the
- 25 partial penetration of pumping wells, stream beds, a

- 1 distance to a boundary and cyclic pumping.
- 2 With analytical equations, it says steady
- 3 state; in other words, the aquifer is not change --
- 4 or the flow in the aguifer is not changing, so
- 5 you -- once the pump is turned on it stays on and
- 6 once it's turned off it stays off; it is not a
- 7 transient condition.
- 8 If you can go ahead.
- 9 Now, these can be put into what's called
- 10 analytical models, and an analytical model is an
- 11 exact solution of a specific yet a greatly
- 12 simplified equation, a groundwater flow equation.
- 13 And these further reduce the number of
- 14 assumptions by using some of the partial penetration
- 15 of a stream and the distributed recharge and then a
- 16 few other equations that will reduce the assumptions
- 17 also.
- 18 One of the most widely known analytical
- 19 models is the EPA's analytical model for the
- 20 wellhead protection, and a lot of communities will
- 21 use that to define a wellhead protection area for
- 22 their community itself.
- 23 And it is nothing more than -- well, it's
- 24 a software package containing four different
- 25 modules; two of which are complete analytical

1 models, and one is a semianalytical, the other one

- 2 is numerical.
- 3 But all -- they assume -- the analytical
- 4 models assume that the flow in the aquifer is steady
- 5 state; again, that the flow is not changing, it's
- 6 not changing in direction, it's not changing in
- 7 volume, and it's not changing in time, and it is
- 8 horizontal, so it's a planer flow.
- 9 Go ahead.
- 10 Some of the inputs for the analytical
- 11 model are your basic aquifer properties which are
- 12 the transmissivities and specific yields again,
- 13 that's a couple of them, your local gradient, which
- 14 is the difference in your head in one spot over a
- 15 head in a different spot over a unit distance, and
- 16 the unit distance could be a foot, a mile, a
- 17 kilometer or what ever.
- 18 And then you can also put in source
- 19 boundaries and a no-flow boundary. A source
- 20 boundary could be something like a stream; a no-flow
- 21 boundary could be something like a bedrock or
- 22 something like that. And then the well pumping
- 23 rate, you put in a well pumping rate, but, again,
- 24 the well is turned on or the well is turned off.
- Now, we go back to this triangle here

where we're talking about the complex groundwater

- 2 flow models, okay, and I'm going to talk about
- 3 numerical flow modeling.
- 4 Now, the numerical flow modeling will take
- 5 care of a lot of the more complex groundwater flow
- 6 situations.
- 7 Now, the numerical simulation of
- 8 groundwater systems, primarily finite difference in
- 9 computer models. What this means is that you have a
- 10 set of rows and columns and layers, and I'll get
- 11 into that in a little bit, and they use a finite
- 12 difference equations to solve for groundwater head
- in each of those -- the cells in those rows, columns
- 14 and layers.
- They're robust, they're very robust, they
- 16 can solve for transient conditions where you have a
- 17 well turning off and on or a stream turning off and
- 18 on or, you know, the flow is starting, the flow is
- 19 stopping, seasonal variations where you have trees
- 20 that are mining the groundwater and then in the fall
- 21 they'll stop mining the groundwater, that type of
- 22 stuff, and they're better than analytical models for
- 23 complex flow.
- Now, for very simplistic groundwater flow
- 25 you may want an analytical model, so you don't

1 necessarily need a numerical model, but for complex

- 2 flow, they're definitely better than the analytical
- 3 models.
- 4 You can also piggyback transport models.
- 5 Something that will -- for like particle transport,
- 6 chemical transport on to the back of these -- these
- 7 models themselves.
- 8 But they simultaneously account for
- 9 aguifer properties such as the thickness, the
- 10 groundwater flow, they account for streams and
- 11 rivers, evapotranspiration, the movement of water
- 12 out of the system and through evaporation and
- 13 transpiration with plants, water table
- 14 configuration.
- Now, in your models you may not have every
- one of these in it, your model may or may not have a
- 17 stream, or it may or may not have
- 18 evapotranspiration, the depth to groundwater may be
- 19 of sufficient depth that you might need all of
- 20 these, like that evapotranspiration, so you don't
- 21 necessarily need every one of these.
- The -- it's a simplification of the
- 23 natural system. What you do is you assign
- 24 properties to the model cells -- cells themselves.
- 25 Like I said, you have rows, you have columns, you

- 1 have layers, so you assign properties to them, and
- 2 each active cell is -- accounts for the total flow
- 3 like -- like a bank, your checking account, the
- 4 amount that you put in, the amount that you take
- 5 out; these cells account for the water that goes in
- 6 and the water that comes out.
- 7 Now, MODFLOW, which is the USGS's version
- 8 of a numerical model, it iteratively solves for the
- 9 water levels in each of these model cells using a
- 10 numerical finite difference.
- Now, there are other types of models
- 12 available that do chemical transport or particle
- 13 transport, heat and surface water and stuff; I just
- 14 want to make that aware to you, but that won't be
- 15 covered in this talk.
- Now, MODFLOW itself it's not the only
- 17 numerical finite difference model out there, there
- 18 are other ones out there; however, it is world
- 19 renown and it is the most widely used groundwater
- 20 flow model within the USGS and outside of the USGS.
- 21 This happens to be a cover page for the Chinese MODFLOW
- 22 Manual.
- Now, if we take the real system, how can
- 24 we break this up into modeling, we have an aquifer
- 25 here with sands and gravels, that would the

- 1 saturated part of the aquifer, then we have the
- 2 clays, which would be the -- considered the
- 3 confining units, which are of lower conductivity
- 4 than the rest of it.
- 5 So the water does not move through the
- 6 clays as much as it does through the sands and
- 7 gravel so we need to account for all of that, and
- 8 then we have a few wells within the system and also
- 9 a stream in this.
- 10 Go ahead.
- 11 So we districtize it and it is flat, so,
- 12 okay, there we go, we have the stream represented by
- 13 this row and these columns, the wells are set within
- 14 one in each column that we have a districtize in, we
- 15 have the clay represented in these layers here, we
- 16 have a five-layer model here is what we have --
- 17 The Aquifer 1 is in the first layer, the
- 18 confining bed, the clay layer, is in this. Now,
- 19 it's not continuous all the way across the model.
- 20 It does pinch out here and it pinches out there, but
- 21 it is represented in a thin layer right between
- 22 these two zones.
- We have Aquifer 2, we have Confining
- 24 Bed 2, which pinches out of here but is still
- 25 represented between these two, and then Aquifer 3

- 1 also.
- Now, once you districtize your model area,
- 3 you do not need to use each and every cell, and
- 4 that's one of the good things about it.
- 5 You can assign which cells you want to use
- 6 and which cells you don't want to use; your area
- 7 does not have to be used by all of them. You can
- 8 have one layer, you can have two layers, three
- 9 layers, or however many layers that you want in the
- 10 system itself.
- 11 So these wells on the corner -- or the
- 12 cells on the corner here are considered inactive or
- 13 no-flow cells.
- Now, the model equations themselves, there
- 15 is the assumption that within each cell, that the
- 16 hydraulic properties are uniform, so it depends on
- 17 your cell size as to how much certainty you have
- 18 within them. Cell size can be however big you want
- 19 to assign it, from ten meters or so to miles.
- Go ahead.
- 21 So these equations down here, they govern
- 22 the groundwater flow within the cells, and the one I
- 23 want to point out with this is that there's an
- 24 X component, a Y component, a Z component, and the
- 25 W there stands for the sources and sinks; whether

1 there's a well in it, whether there's a stream in it

- 2 or something like that, but they all come out to the
- 3 change in head over change in time and the storage
- 4 factor.
- Well, these -- this S of S and Delta H
- 6 over Delta T, that's the same thing over here
- 7 basically, but your summation of all of the cues in
- 8 and out, if you summed all these Xs and Ys and Zs
- 9 together, that would -- so the Q is used for
- 10 discharge; that's what we use to represent
- 11 discharge.
- 12 So we have a summation of all the flow--we
- 13 use Q as flow--that flows into a cell, then
- 14 something has to change, it could be zero, but it --
- 15 that would be the volume, so it's a -- it's still
- 16 accounting for everything.
- 17 So what can MODFLOW model in the real
- 18 world? MODFLOW in the real world can model -- and
- 19 if you can't read this, we do have a publication
- 20 that can be obtained on site at our web site's -- I
- 21 should say our -- obtained on our web site at this
- 22 URL at the bottom of the page here, and hopefully
- 23 you can at least read that.
- 24 But anyway, unconfined and confined
- 25 aguifers, the unconfined one here which is -- has a

- 1 water table aquifer; the confined one, which is a
- 2 fully saturated aguifer and confined such that the
- 3 pressure would exceed or rise above where you
- 4 encounter it.
- 5 Also it can model faults and other
- 6 barriers like right over here, No. 2, fine grain and
- 7 confining units; No. 3, these little different
- 8 layers in conductivity, or rivers, drains and
- 9 springs.
- Now, drain in the spring, that is the
- 11 difference between the river, and the drain in the
- 12 spring, as far as the modeling is concerned, is the
- 13 drains in springs groundwater just leaves the area;
- 14 with the river, the groundwater -- or the water can
- 15 enter the groundwater or it can leave the
- 16 groundwater. It has interaction with groundwater
- 17 itself, whereas with the drain, it just leaves.
- 18 And then the ephemeral springs, those -- or
- 19 streams, those streams that just run on
- 20 precipitation events. Model reservoirs recharge
- 21 from precipitation, evapotranspiration, and then
- 22 wells themselves.
- Now, calibration, you want the -- you want
- 24 the model to represent real world situations, and
- 25 this is important, so your initial inputs are

- 1 estimated or measured.
- 2 You want to input stuff in field studies
- 3 using the historical or perhaps you're carrying on a
- 4 study itself, or maps, previous reports, stuff like
- 5 that, you can get your climatic data from weather
- 6 stations, you can get some of the pumpage if you
- 7 have wells in your model area from some of the
- 8 irrigators, municipality, industrial, and then if
- 9 you have streams or canals in them -- in your model
- 10 area then you'd also want to obtain that
- 11 information.
- Now, some of the input are held constant.
- 13 If you know that better -- more then that's --
- 14 that's what we consider constrained. Say like your
- 15 stream flow, if you know what your stream flow is,
- 16 then you'd want to constrain it and keep that
- 17 constant, so adjust everything else to it.
- 18 So the other inputs to it, the recharge
- 19 values, you would adjust to the -- to the -- those
- 20 that absolutely know, and these could be water
- 21 levels too.
- Okay. So you -- you start with reality,
- 23 you start with what you know, your observ- -- your
- 24 observed water levels and your discharge to the
- 25 stream, and then you try to arrive at a point where

- 1 the groundwater irrigate -- or the groundwater --
- 2 simulated groundwater levels are going to be within
- 3 some kind of predefined tolerance of your observed
- 4 groundwater levels.
- 5 And this is important, that your
- 6 discharges to the streams are also within some kind
- 7 of a tolerance; that is, if you do have streams
- 8 within your model area.
- 9 And nonuniquenesses is possible. That
- 10 means that if you have two different models, the
- 11 very same model, that you can have, if you match
- 12 them to -- only to the water levels, that those
- 13 water levels can be adjusted such that they could be
- 14 totally different.
- You can have one stream that shows, say,
- 16 ten cubic feet per second, and the other one showing
- 17 a thousand cubic feet per second. You can just --
- 18 it's all internally on how you go about adjusting.
- 19 And so you -- what you want to do and what
- 20 you need to do is limit the nonuniqueness about it.
- 21 You want to take what you know and limit everything
- 22 and try to tie everything in together, and so that
- 23 everything is calibrated to multiple observations,
- 24 and so if you're calibrating to water levels, you're
- 25 calibrating to discharge, you're calibrating to

1 recharge, so -- and the better models calibrate over

- 2 transient time, meaning over time changes and time.
- Go ahead.
- 4 Now, not all models are calibrated are the
- 5 same, there are models that don't have streams in it
- 6 so you can't calibrate to a stream. That idea,
- 7 modeling should be built with specific purposes in
- 8 mind.
- 9 I've built a model that -- up north by
- 10 Maple Creek, and the specific purpose was to model
- 11 groundwater flow from an agricultural field to a
- 12 discharge into Maple Creek, so that we can determine
- 13 some of the agricultural chemicals moving from the
- 14 ag -- from the field to the -- to the stream.
- 15 You should have a purpose in mind when you
- 16 are building these models. The process of building
- 17 them and calibrating the model is instructive; in
- 18 other words, you need to learn how the system
- 19 behaves.
- 20 There may be data gaps that you discover
- 21 or bad or erroneous data, that doesn't mean that it
- 22 was bogus data, meaning that it was purposely done; that
- 23 just means that there are instances where maybe a
- 24 water level that was measured is way off, and you
- 25 find out later that it isn't the water level that

- 1 was taken but, say, an oil cut in an irrigation
- 2 well. A lot of irrigation wells might have oil in
- 3 them.
- 4 And it's important to look at previous
- 5 unidentified factors. Say there's a canal that
- 6 was -- you didn't know about that all of a sudden
- 7 happened to be lined, something like that.
- Now, the uncertainty in models, you could
- 9 have aquifer heterogeneity, meaning is the aquifer
- 10 the same horizontally and vertically; that could be
- 11 an uncertainty for the -- for the model; boundary
- 12 conditions, what is preventing flow from going
- 13 somewhere, the streams, bedrock, flow boundaries,
- 14 that type; estimation of your model perimeters or
- 15 your transmissivities, right, your specific yields,
- 16 right, they could be off by factors of ten or more,
- 17 depends on what you're doing; water use, that could
- 18 be a very big uncertainty. You may not know how
- 19 much water is being pumped by irrigation wells or
- 20 other wells within your modeled area; and the
- 21 climate, it could be raining in one part more -- it
- 22 could be raining in one part of your model more than
- 23 in another part, and that's some of the stuff that
- 24 you can be uncertain about.
- Now, the modeling process itself is

- 1 iterative. You start with the initial conceptual
- 2 model, you build a computer simulation, then you run
- 3 the calibration checks; do these match your targets
- 4 within the predefined levels that you have?
- If it's no, you look at either new data,
- 6 reanalyze the existing data or so, you update your
- 7 conceptual model and then you go through the process
- 8 all over until you get a yes, and then have you a
- 9 usable tool.
- 10 Go ahead.
- 11 So we'll take a look at a computer
- 12 simulation, and this is a model that was done, and
- 13 we're going to look -- go ahead, one more.
- We're going to look at the water level
- 15 rises from canals in this area, hopefully this will
- 16 work.
- 17 One more.
- These rises are from leakage out of the
- 19 canal system, the tri-state canal -- I believe it's
- 20 the tri-state canal system, so water levels within
- 21 this area rose about 60 feet from 1940 to 1950 in
- 22 this simulation here.
- 23 And if groundwater pumps were operating
- 24 and there was no canal system, you certainly
- wouldn't expect a 60-foot groundwater level rise.

- 1 Go ahead.
- 2 So you do the calibration checks, and this
- 3 series of dots represents the wells that were used
- 4 for water level measurements. The thing to notice
- 5 is that the yellow ones are within the simulated
- 6 water levels -- targeted water levels of plus or
- 7 minus 25 feet.
- Now, that's a wide range, but the mean, or
- 9 the average, water level was about two and a half
- 10 feet dissimulated from the observed water levels.
- 11 The blues were above 25 feet, and the reds
- 12 were below, but this is a well calibrated
- 13 groundwater model.
- 14 Spring discharge, everything was within
- 15 range except for the Brady to Cozad, and the only
- 16 reason that that didn't fall within range is that
- 17 part of this stretch itself, the reach of the
- 18 Platte River, did not fall within the -- within the
- 19 domain of the model.
- 20 Yes?
- 21 PAUL RANDAZZO: I was wondering how much
- 22 longer your presentation --
- 23 VIDEOGRAPHER: You need the microphone.
- 24 PAUL RANDAZZO: Where do I get one at?
- 25 GREG STEELE: It's not very much longer.

```
1 PAUL RANDAZZO: How much longer?
```

- 2 GREG STEELE: I do not know.
- 3 PAUL RANDAZZO: It's your presentation; five
- 4 minutes, twenty minutes?
- JASON LEIBBERT: Hey, be nice.
- GREG STEELE: I don't have --
- 7 PAUL RANDAZZO: It's very fascinating, very
- 8 interesting; I just don't live in Cozad. I don't
- 9 care about Cozad; I care about me.
- 10 GREG STEELE: I'm just talking about
- 11 general groundwater modeling.
- 12 PAUL RANDAZZO: Okay.
- 13 GARTH ANDERSON: This is just a real-world
- 14 example to show how modeling is done, it's just a --
- 15 so we understand what some of the basic concepts
- 16 are.
- 17 PAUL RANDAZZO: I think we all understand.
- NEW SPEAKER: Not everyone does.
- 19 PAUL RANDAZZO: All right.
- 20 NEW SPEAKER: So let him his finish his
- 21 presentation so we can all understand what's going
- 22 on.
- 23 PAUL RANDAZZO: I'm just a little bored.
- 24 GARTH ANDERSON: Go ahead, Greg.
- 25 GREG STEELE: So then what do you do with

- 1 a calibrated model? Those people do what-if
- 2 scenarios, those are the most common, to determine
- 3 future pumping scenarios, putting wells in, and so
- 4 that's the most common. What happens in droughts,
- 5 what happens in changes with development, that's
- 6 your most common.
- 7 Then you can also do future studies,
- 8 advanced modeling techniques. You can take your
- 9 regional model, scale it down to a local model, and
- 10 then, of course, you can continue to update the
- 11 model too.
- So a few examples, this is a Virginia
- 13 Coastal plain model, and this one is not even
- 14 Nebraska so I apologize to those that don't live in
- 15 Virginia, but anyway please continue.
- 16 The purpose of that one was to show it --
- 17 that had 96 layers, so the purpose of that last one
- 18 was to show that you're not constricted to only a
- 19 single layer; it did have 96 layers within it.
- The Elkhorn Loop Model is one that we're
- 21 working on here in Columbus and Norfolk, and it's a
- 22 large model, and, again, you have rows, you have
- 23 columns, you have layers in each of these models,
- 24 but that -- once you take out the inactive cells,
- 25 then that leaves you the active cells, and it does

- 1 not have to be a rectangular shape.
- 2 So continue.
- 3 The Elkhorn Loop Model is a regional
- 4 groundwater flow model for the integrated resource
- 5 management tool, and it's to compile the information
- 6 on the system itself and characterize how this
- 7 system behaves.
- 8 Okay. So in summary, there are many
- 9 different tools that can be used. The models,
- 10 they're also the tools, but no one model itself fits
- 11 every situation. All tools require data, and then
- 12 the groundwater flow model in itself is an iterative
- 13 process of data input and calibration.
- So are there any questions?
- 15 MIKE RYAN: Mike Ryan, I'm from Omaha.
- 16 Why would the MUD model for their well
- 17 field be any better than, say, a weather service
- 18 model predicting the weather? What -- what would
- 19 make MUD's model more accurate? Let's assume it's
- 20 more accurate, why would it be more accurate than a
- 21 weather service model?
- 22 GREG STEELE: Those are like comparing
- 23 apples and oranges; you're using a -- two totally
- 24 different models. You're using a groundwater flow
- 25 model and you're using a weather model.

1 MIKE RYAN: But we all know how inaccurate

- 2 weather service models tend to be. I mean, it's
- 3 better to use them than what we had, say, 30 or
- 4 40 years ago, but we still know they're inaccurate.
- 5 What -- you know, why wouldn't a groundwater model
- 6 be just as inaccurate?
- 7 You've got different variables, granted,
- 8 but you still got variables and, you know, my
- 9 thought is that the variables in a weather model are
- 10 probably more observable than variables in a
- 11 groundwater model.
- 12 GREG STEELE: I'm not going to comment
- 13 directly on the MUD model. I do not know enough
- 14 information on the MUD models. What I will say is
- 15 that the groundwater models in general, they're only
- 16 as good as the information that you put into them.
- 17 That includes our Elkhorn model, our Loop model, our
- 18 Cozad model, that includes the Virginia model.
- 19 So it really depends on how you
- 20 districtize the -- how small you make your cells,
- 21 how accurate you make them, and it all has to do
- 22 with the groundwater flow equations of -- and keep
- 23 in mind, the groundwater does not change nearly as
- 24 fast as what the air does.
- 25 MIKE RYAN: Okay.

```
1 GREG STEELE: The mediums are totally
```

- 2 different. The groundwater, the temperature stays
- 3 relatively the same, the air temperature does not,
- 4 the groundwater temperature stays relatively the
- 5 same.
- 6 MIKE RYAN: Yeah, but your flows change,
- 7 you know, they're affected by weather, as you said,
- 8 and you try and take that into consideration, and
- 9 your seasons change and you have more evaporation at
- 10 sometimes.
- I mean, you've still got variables. It
- 12 just seems like a model is a little better than an
- 13 educated guess, and you can't say, you know, with a
- 14 great deal of certainty, you know, what's going to
- 15 happen.
- You can't say that these gargantuan wells
- 17 that MUD is going to put in are not going to affect
- 18 the Mead site or the contaminants coming from the
- 19 Mead site. I don't think they can say that until
- 20 they flip the switch down there.
- 21 GREG STEELE: Well, again, I can't -- I
- 22 can't comment on that. All I can say is that
- 23 groundwater model in general, if it's -- if it's
- 24 designed properly, it is designed for the specific
- 25 purposes, and each of them, they have their own

1 purpose from which the designer has made it, and

- 2 they can answer a lot of questions.
- 3 They can't necessarily answer every
- 4 question and they don't necessarily coincide with
- 5 every question being answered that comes up in the
- 6 future. You may have to collect more data and
- 7 adjust the model as you see -- as you see fit.
- 8 MIKE RYAN: Now, you said you can't
- 9 comment on the MUD model because you haven't
- 10 analyzed it yet. Has USGS been paid by MUD at any
- 11 point in time to do any analysis of their work
- 12 product or models that were done for MUD or by MUD?
- GREG STEELE: No, absolutely --
- 14 RICK WILSON: Well, Greg, we have done
- 15 water quality sampling on their wells, but we have
- 16 not looked at any model.
- 17 GREG STEELE: Not water, no, not modeling,
- 18 and that's what he asked.
- 19 MIKE RYAN: You've done sampling?
- 20 GREG STEELE: We have done -- we have done
- 21 sampling, but we do sampling for other folks too.
- 22 MIKE RYAN: But you've done it for MUD?
- 23 GREG STEELE: We've done it for NRDs,
- 24 we've done it for the -- many NRDs, many entities.
- 25 As I mentioned when I -- when I started off my

1 presentation, that we're a nonbias organization. We

- 2 collect the data, we give it to the people that need
- 3 it, and then we have a set protocol that is the same
- 4 throughout the United States.
- 5 MIKE RYAN: What kind of sampling -- I'm
- 6 just curious, what kind of sampling?
- 7 RICK WILSON: Rick Wilson, I'm with the
- 8 USGS.
- 9 If you go to their web site and go to new
- 10 West Platte Valley neighborhood, you can go there
- 11 and you can see all the analytical results from the
- 12 three periods of sampling that we would have
- 13 conducted for MUD.
- 14 And you can see all the different
- 15 compounds that we have looked for; primarily RDX and
- 16 also some of the organic solvents, and you'll see
- 17 that listing and the results that we found, and we
- 18 didn't find any, but they're always listed on their
- 19 web site.
- 20 MIKE RYAN: Okay. And I believe I looked
- 21 at the web site, and I think they paid USGS a
- 22 hundred thousand dollars for that work.
- 23 RICK WILSON: Yeah, that's about right.
- 24 MIKE RYAN: Okay. Thank you.
- 25 GREG STEELE: Yes.

1 LYNN MOORER: Lynn Moorer, M-O-O-R-E-R. I

- 2 have a question.
- 3 Mr. Steele, do you have a contractual
- 4 relationship with the Kansas City Corps of Engineers
- 5 or any district of the Army Corps of Engineers; that
- 6 is, the USGS?
- 7 GREG STEELE: Contractual, in what -- in
- 8 what way?
- 9 LYNN MOORER: Do you have a contract with
- 10 the Kansas City --
- 11 GREG STEELE: I understand the --
- 12 LYNN MOORER: -- Corps of Engineers?
- 13 GREG STEELE: -- contract. I meant in
- 14 what process? We do surface water, we do surface
- 15 water I do believe.
- 16 LYNN MOORER: What do you mean by do, you
- 17 do --
- 18 GREG STEELE: Well, you asked if we have a
- 19 contract. We run surface water gauges.
- 20 LYNN MOORER: I'm sorry, I didn't hear
- 21 you.
- 22 RICK WILSON: This is Rick Wilson again.
- As a government agency, we do not contract
- 24 the interagency agreements, and we do with
- 25 Kansas City Corps of Engineers, the Omaha Corps of

1 engineers and many of the state and local agencies

- 2 as we pointed out; so we don't contract, we're a
- 3 government agency, but we do have agreements.
- 4 LYNN MOORER: All right. So do you
- 5 have -- does the USGS have an interlocal agreement
- 6 with the Kansas City District of the Army Corps of
- 7 Engineers?
- 8 RICK WILSON: We have several.
- 9 LYNN MOORER: And the subjects or the
- 10 general work or the agreement covers what just
- 11 generally; what do you do for them?
- 12 RICK WILSON: The majority of the work
- 13 that we've done for the Kansas City District has
- 14 been stream gauging, water measurements in the
- 15 streams and rivers in the state of Nebraska.
- We have done some other investigative
- 17 studies, primarily geophysical investigations where
- 18 we do subsurface investigations with remote
- 19 sensing tools, so those are the two primary types
- 20 of agreements that we have with the Kansas City
- 21 Corps of Engineers.
- 22 LYNN MOORER: So it'd be fair to say you
- 23 don't have an agreement of any kind with the
- 24 Kansas City Corps of Engineers with respect to
- 25 modeling?

```
1 RICK WILSON: None.
```

- 2 LYNN MOORER: Therefore, what Mr. Steele
- 3 is saying this evening is simply USGS's view, but it
- 4 is not speaking for the Kansas City Corps?
- 5 GREG STEELE: Absolutely.
- 6 LYNN MOORER: All right. So we still do
- 7 not know the Kansas City Corps' views on these
- 8 models yet; we have the USGS's views, but they don't
- 9 have a relationship in which they are speaking on
- 10 behalf of the district, correct?
- 11 GREG STEELE: No --
- 12 GARTH ANDERSON: Yeah, this is Garth
- 13 Anderson, that's exactly the reason we brought them
- 14 in here tonight because they are a neutral with
- 15 respect to the groundwater modeling at the site, and
- 16 they're international experts on groundwater
- 17 modeling, so no better authority to talk general
- 18 concepts than USGS.
- 19 LYNN MOORER: We appreciate the
- 20 clarification and the perspective, just so folks
- 21 understand, the point of this meeting, though, is to
- 22 hear the Kansas City Corps' views of these three
- 23 models, so I felt it was important people understand
- 24 we haven't gotten that yet. We're hearing the
- 25 USGS's views, but they're not a contractor or a --

1 have an agreement relationship for the Kansas City

- 2 District.
- 3 GREG STEELE: Right --
- 4 LYNN MOORER: Thank you.
- 5 GREG STEELE: -- but you're not hearing
- 6 our views of the model; it's just our views of
- 7 groundwater modeling. I want to clear that up.
- 8 GARTH ANDERSON: Okay. It's pretty clear.
- 9 WANDA BLASNITZ: Wanda Blasnitz
- 10 (phonetic). I had three questions.
- One may be a little bit related to what
- 12 the gentleman was asking about accuracy because you
- 13 mentioned that there's uncertainties, and I
- 14 understand that, you know, you have to make an
- 15 estimate and then as you get data you put back into
- 16 the model, and you keep building a better model if
- 17 that's the correct way to explain it.
- 18 What I guess I was wondering with your
- 19 experience of having done this, once you've used the
- 20 model and then you've seen what happens in reality,
- 21 so there would be some way to tell how accurate
- 22 maybe a model was for the way it predicted
- 23 something, have you found that there's some
- 24 models -- and I don't know whether when I say model
- 25 I mean software, some kind of model that is better

- 1 than another one?
- 2 GREG STEELE: Yes, I've looked at some
- 3 models that are better than other ones. For
- 4 instance, we've done -- done one in -- we, the USGS,
- 5 did one in California, and it was in the San Joaquin
- 6 Valley, and it matched up very well with the
- 7 predicted heads as --
- 8 And one of the things that you can do is
- 9 if you have a recorder well or as some would say, a
- 10 long-term observations of the water levels over an
- 11 aerial extent so that you have many, many points to
- 12 match the model to, and if you can get the model to
- 13 match those, then you -- it is a good fit, and if
- 14 you can get the water balance to match.
- So it's just not a matter of matching
- 16 heads; it's a matter of matching the water balance,
- 17 so the heads, the discharge and stuff, so there are
- 18 very good models out there.
- 19 WANDA BLASNITZ: With those models, I mean
- 20 can you give it a percent accuracy like the one that
- 21 you described in California?
- 22 GREG STEELE: No, I couldn't give
- 23 a percent accuracy.
- 24 WANDA BLASNITZ: And I appreciated your
- 25 explaining how the models work, and I was just

- 1 curious, you know, when you had the pyramid up
- 2 there, is the Corps' model that they use for this
- 3 site numerical, analytical, or where did it fall on
- 4 there if somebody -- I know you --
- 5 GREG STEELE: I don't know.
- 6 WANDA BLASNITZ: I just wanted to ask it
- 7 before we went forward since you did such a good
- 8 explanation.
- 9 GREG STEELE: All of them fell within the
- 10 groundwater modeling except for the analytical
- 11 equation, and that would -- and that would semifall
- 12 within here, but the analytical model and the
- 13 groundwater flow model, the numerical model, they
- 14 all fall within here.
- 15 WANDA BLASNITZ: Is the Army's model
- 16 numerical or analytical?
- JASON LEIBBERT: Jason Leibbert with the
- 18 Army.
- 19 Our model is numerical and we use the USGS
- 20 MODFLOW code to do the modeling.
- 21 WANDA BLASNITZ: And when was the last
- 22 time the Corps' model was updated to include new
- 23 data, actual data?
- 24 GARTH ANDERSON: We're going to be
- 25 covering that in just a few minutes, so if you can

- 1 hold tight we'll get right to that.
- 2 Garth Anderson with the army.
- 3 WANDA BLASNITZ: Thank you.
- 4 GARTH ANDERSON: Okay. That looks like
- 5 all the questions on USGS's presentation. Greg,
- 6 thanks for your time. I appreciate your coming out
- 7 tonight.
- 8 At this time we're going to have
- 9 Jason Libbert who's probably going to be talking for
- 10 the rest of the evening here on both -- on both
- 11 Kansas City District's model and our -- some
- 12 comments on the Corps' review of the MUD model.
- 13 So Jason if you'd take it away, get a
- 14 drink and --
- JASON LEIBBERT: Okay. So we'll go
- 16 through, we'll talk about the Army's model, the one
- 17 that we've developed, we'll talk about comments that
- 18 we've received on that model from a couple of
- 19 different agencies, and then we'll talk a little bit
- 20 about the MUD model.
- Next slide.
- 22 So one of the things I wanted to point out
- 23 tonight is kind of the purpose for the model, the
- 24 groundwater model that we've prepared, and how we
- 25 use it to manage our site.

```
1 And we call this the remedial design
```

- 2 groundwater model, so throughout the course of the
- 3 night when I call it the RDGM model, that's ours,
- 4 that belongs to the Army Corps of Engineers, that's
- 5 the one that we've developed, so just remember that
- 6 acronym, RDGM.
- 7 The RDGM model is really just a tool that
- 8 makes predictions about where the groundwater is
- 9 going to flow and how fast it's going to flow, what
- 10 direction it's going to flow, and that's -- at the
- 11 heart of it, that's what the model does; that's the
- 12 most simple explanation of the groundwater model, is
- 13 you feed it information and it makes a prediction
- 14 about where the water is going to go.
- 15 And then also with the model you can make
- 16 predictions about what's going to happen if you add
- 17 some sort of outside influence. If you add a
- 18 pumping well into that system, that'll change the
- 19 direction of flow, it'll change the velocity, it'll
- 20 change how fast the water flows; you can put that
- 21 into the model and you can make predictions about
- 22 where the water is going to go under those
- 23 conditions as well.
- And really what we use our model for is to
- 25 help us understand if our extraction wells are truly

1 capturing the contaminated groundwater; and that's

- 2 really what the basis of our model is.
- 3 It -- we -- it makes predictions whether
- 4 or not our extraction wells are capturing, are they
- 5 pumping hard enough, are they capturing all the
- 6 contaminated groundwater, is all the water flowing
- 7 into our wells the way it's supposed to be.
- 8 That's how we use the model, is to make
- 9 predictions, and then we go out and collect
- 10 measurements to see if those predictions are right,
- 11 and then as Greg described, put that information
- 12 back into the model, and it's a cycle of continuous
- 13 improvement.
- 14 So this is a graphic that's actually a
- 15 little bit similar to what Greg provided, and I
- 16 want -- I want to really make this point, that the
- 17 model that's kind of this continuous process, you
- 18 start by giving it information you know about the
- 19 site.
- 20 We take water level measurements from
- 21 different wells, we take different level
- 22 measurements from the different streams and the
- 23 rivers, we know how much some wells are pumping, we
- 24 know how much it rains in a year, we know how much
- 25 irrigation goes on during a season.

1 We put all that information into the

- 2 model, and then it makes a prediction about what's
- 3 going to happen; you know, groundwater is going to
- 4 go this direction or it's going to go this direction
- 5 or it's going to be captured by our extraction wells
- 6 or it's not going to be captured by our extraction
- 7 wells; that's what the model tells us.
- 8 And then the last step in the process is
- 9 we go out and we take measurements to see if any of
- 10 those predictions actually came true or not.
- 11 And that's the part of the process that I
- 12 think has been missing from a lot of the
- 13 discussions, is that once you do the model in the
- 14 computer, you makes the rows and the columns and you
- 15 do all that stuff.
- Now, that's very labor intensive to do in
- 17 the computer, and all that information lives in the
- 18 computer, and it doesn't really mean anything until
- 19 you go out and you collect those measurements, and
- 20 that's what we're doing right now, is taking those
- 21 data, taking those measurements, and checking it
- 22 against the model.
- Next slide.
- 24 An we've been doing this for about the
- 25 past ten years. The Corps' first conceptual

1 groundwater model for the site was in 1996, and then

- 2 we made predictions and we collected more
- 3 information, and we put that back into the model in
- 4 1998, then we went through that cycle again in 2002,
- 5 and then we went through that cycle again in 2004,
- 6 and then we did it again in 2005, and we're going to
- 7 do it again this year in 2006, so that we're
- 8 continuously working on the model.
- 9 It's not a static thing that once you
- 10 finish it you put it on the shelf and you never look
- 11 at it again and you go on to the next thing, is that
- 12 always work on the model, and you're always working
- 13 to make it better by feeding it more information.
- So, again, you know, as the model
- 15 continues to grow and continues to -- as we continue
- 16 to add more information in the model, it continues
- 17 to get better over time, and that it can make
- 18 predictions better now than it could three or four
- 19 or five years ago because we have more information
- 20 now than we had three or four or five years ago.
- 21 So, again, this cycle, this kind of
- 22 do-loop thing is something that we're always going
- 23 to do with the groundwater model. As long as we're
- 24 out here at the site, as long as we have a cleanup
- 25 project to perform, we're going to be doing this

- 1 with the model, so it's not a one-time thing, it's
- 2 not something that's ever truly complete even though
- 3 we -- we write a report about what we find with our
- 4 model and we compare it to the results and we talk
- 5 about calibration and we talk about sensitivity
- 6 analysis and we talk about hydraulic conductivities
- 7 and all that.
- 8 And that's good, the report is a good
- 9 document to show how well of a job the model is
- 10 doing, how well the model is working, but that we
- 11 never really just set that aside and move on; we
- 12 continue to update the model and make it better over
- 13 time.
- So one of the things that I want to --
- 15 also want to talk about is kind of the difference
- 16 between the Corps' RDGM model and the modeling work
- 17 that MUD has performed.
- 18 And they're similar because they cover
- 19 kind of the same areas, but they're different
- 20 because they have two different purposes, and our
- 21 model is designed to help us manage our cleanup
- 22 project.
- We have a number of extraction wells as
- 24 you probably know, and they all pump groundwater and
- 25 they all go to our treatment plant, and that's how

1 we're trying to clean up the aquifer here. Our

- 2 model does a really good job of helping us verify
- 3 how well those extraction wells are working.
- 4 The MUD model is much different in
- 5 purpose; they're looking at a very broad area.
- 6 Their model covers a much broader area than our
- 7 model does, the MUD model is very much interested in
- 8 its interaction with the Platte River, the MUD model
- 9 is very much interested in drops in water levels
- 10 around different landowners that may or may not be
- impacted by MUD's operation, and it just so happens
- 12 that there's this Mead Superfund Site inside the
- 13 area that MUD is trying to model.
- Now, this is important to MUD, they need
- 15 to pay attention to us and they need to demonstrate
- 16 that they're not going to have a negative impact on
- 17 us, but that's not really the point of their model.
- 18 Their model is more on a regional scale and trying
- 19 to show effects across the whole region due to their
- 20 operations.
- 21 So their -- the RDGM model and the MUD
- 22 models are -- again, they've very similar in a lot
- 23 of ways because they have to be, but they're also
- 24 very different in some ways because they serve
- 25 different purposes.

- 1 Go back.
- 2 A couple other points I wanted to make,
- 3 the RDGM model, you know, we can simulate the MUD
- 4 well field and we can simulate the Platte River
- 5 because we have to because we have to be able to
- 6 account for those interactions in our work that we
- 7 do, but that's not really the focus of our model the
- 8 way it is in MUD's.
- 9 So we have kind of the same information
- 10 that MUD has, but that's not really the objective
- 11 for us. Our objective is more a demonstration of
- 12 successful containment, and this is the cleanup
- 13 project working the way it's supposed to, that's the
- 14 purpose of ours.
- So one of the topics to cover tonight is
- 16 the Saunders County Board of Supervisors hired a
- 17 consultant last year to review the MUD model, and in
- 18 doing that work that consultant also looked at some
- 19 of the RDGM reports; a report from 2002 and a report
- 20 from 2004.
- 21 And when the consultant wrote his comments
- 22 back to the Saunders County Board, there were a few
- 23 statements and a few comments that were about the
- 24 RDGM model, so one of the things that we wanted to
- 25 do was to kind of respond to those comments a little

- 1 bit.
- 2 Next slide.
- 3 So really the consultant's comments kind
- 4 of fall into a couple of general categories; they're
- 5 all kind of along these same lines.
- 6 The consultant talked about the extent of
- 7 contamination and the way the Kansas City District
- 8 shows that in our maps like this one; they talked
- 9 about the need for additional monitoring and being
- 10 able to show that the containment system is working
- 11 effectively.
- 12 Their comments talked about a couple of
- 13 specific perimeters that are important to the model,
- 14 riverbed conductance and the hydraulic conductivity;
- 15 those are two important factors that you need to
- 16 estimate in the model, kind of like Greg described,
- 17 and the consultant also talked about Johnson, Clear
- 18 and Silver Creeks.
- 19 So with respect to the extent of
- 20 contamination we've undertaken a couple of different
- 21 investigation efforts to try to verify how well
- 22 we're depicting the boundaries of the groundwater
- 23 contamination, and I'll go to the map, and really
- 24 what we're talking about is this eastern perimeter.
- 25 And the question that the consultant posed

1 and actually the question that we all have is how

- 2 well do we know where this line is, is this line
- 3 really accurate the way it's shown on our maps.
- 4 So if you remember from the last RAB we
- 5 did investigation work in October and November of
- 6 2005, where we did a -- we call them transects. We
- 7 did lines of sampling to try to find where this line
- 8 is, and the results from first round were actually
- 9 very good, and the only differences we saw were
- 10 right in this area here where we would adjust the
- 11 way that we draw the contamination right down here
- in a small way in a very small amount.
- 13 Everything else, all the other results
- 14 pointed to the conclusion that this is still a
- 15 pretty good way to draw the extent of the
- 16 contamination, so that was the first step.
- 17 The second step is more -- more sampling
- 18 to go back to some of the areas where we weren't
- 19 able to sample the first time to really kind of fill
- 20 in the gaps in that line.
- 21 That work is already underway, some of you
- 22 may have had the field crew out on your property
- 23 last week, but, of course, they had to go home
- 24 because of the snow, so the plan is to start up
- 25 again next week as soon as it's dry enough, and

- 1 they'll complete that work in -- maybe not by the
- 2 end of March, it might go into April a little bit,
- 3 but we'll have those results and we'll be able to
- 4 show that, you know, either this needs to be
- 5 adjusted, and we'll document that, or that the way
- 6 we draw this contamination can stay the way it is.
- 7 So the consultant's comments about that
- 8 are -- it's a fair comment, that's an important
- 9 piece of information that we all need to know, is
- 10 where is the contamination, and we've done a lot of
- 11 work to confirm this, and the results that we've
- 12 obtained so far are good in the sense that this is
- 13 still a good picture, it hasn't really changed.
- One of the other consultant's comments was
- 15 need for additional monitoring, and, again, we've
- 16 talked about this before, the question really is
- 17 does the Corps have enough monitoring wells in this
- 18 area to be able to see the effects from the MUD
- 19 operations when MUD starts pumping.
- 20 Are we going to be able to see any sort of
- 21 deflexion, if contamination were to do something
- 22 like this would we even be able to see it, and
- 23 that's a good question, that's a fair question, and,
- 24 again, that's something that we've already been
- 25 working on to address.

```
1 And based on the results of these
```

- 2 investigations that'll be complete in April, we'll
- 3 decide with EPA and NDEQ where the appropriate
- 4 locations for new monitoring wells should be.
- 5 And right now we have enough funding on
- 6 contract to pay for almost a hundred new monitoring
- 7 wells. Most of them are going to go on this eastern
- 8 side, there's a few that are going to go down here
- 9 along the south.
- 10 We already have a number of monitoring
- 11 wells along the south, but there's probably some
- 12 areas where we can use a couple more, so there's
- 13 going to be a few wells down here that'll be new,
- 14 and most of them will go in this area here.
- The schedule for that right now is to do
- 16 this investigation sampling in April, get the
- 17 results, have crops planted, obviously wait for
- 18 harvest to be completed, and then go back to these
- 19 areas and install those monitoring wells before the
- 20 end of the year, this year, before the end of 2006.
- 21 So if the wells are in by the end of 2006,
- 22 according to schedule, we'll be able to sample them
- 23 all year long during the year 2007, and then in
- 24 2008, when MUD starts their operations, we will have
- 25 already had a year's worth of data prior to them

- 1 starting their operations, so we should have a
- 2 pretty good picture of what's going on in here.
- Now, the other thing I want to point out
- 4 is all of this work is in addition to everything
- 5 that we already do. Most of you probably live
- 6 around the area. These green spots on the map here
- 7 are individual homeowners -- or individual houses
- 8 rather, that have a well for domestic purposes, so
- 9 those will continue to be sampled once a year or
- 10 more frequently if you're in -- if you're one of
- 11 these along Wanebasin (phonetic) Road.
- So, you know, there's a great deal of
- 13 sampling, there's a great deal of work that goes on
- on a year-to-year basis to try to confirm where that
- 15 contamination really is on the map.
- 16 The consultant talked about the importance
- 17 of riverbed conductance and also talked a little bit
- 18 about hydraulic conductivity in his comments, and
- 19 those are important perimeters in the model.
- They're even more important for MUD
- 21 especially for the riverbed conductance, but it's
- 22 important for us as well because we have to be able
- 23 to do kind of the same simulation; we have to be
- 24 able to account for what the Platte River is doing
- 25 during the course of the year.

```
1 And we do that with a number of gauging
```

- 2 stations that are on the river, we also can -- we
- 3 rely on historic data, some of which was generated
- 4 by the City of Lincoln when they installed their
- 5 wells, so there is some information available about
- 6 the Platte River that we use in the model.
- 7 And it's important for us to continue to
- 8 study the Platte River and what is happening with
- 9 the Platte, and in the next version of the model
- 10 we'll include any new information that's available,
- 11 either from USGS or from the City of Lincoln or
- 12 anyone else that has an impact on the Platte River.
- We go to them and look for any new
- 14 information to share so we can use that, and that's
- 15 something we'll do in the next version of our model.
- 16 And then the consultant also talked --
- 17 LYNN MOORER: I have a question on
- 18 something you just had on your previous slide.
- 19 I'm looking at your statement here that's
- 20 saying that the Kansas City District has used the
- 21 best available information to estimate both of these
- 22 factors, and I want to ask about hydraulic
- 23 conductivity.
- 24 Have you addressed all the concerns and
- 25 criticisms raised by Dr. Brian Zurbuchen of DEQ in

- 1 his April 13, 2004 letter?
- 2 Just as a brief background to ask -- to
- 3 let you know what I'm talking about, he noted that
- 4 the hydraulic conductivity assigned in RDGM 4 does
- 5 not accurately reflect the conditions at the site;
- 6 and therefore the model predictions of contaminant
- 7 transport are not reliable.
- 8 Among the various things that he noted is
- 9 that the authors of RDGM 4 have offered conflicting
- 10 conceptual models of the Todd Volley Aquifer beneath
- 11 the Mead NOP site.
- 12 And he stated, DEQ believes there's
- 13 overwhelming evidence that the upper zone of the
- 14 aquifer is less conductive than the lower zone, and
- 15 these two units must be assigned unique values of
- 16 hydraulic conductivity in order to achieve the most
- 17 reliable contaminant transport predictions.
- So he specifically said, please, assign
- 19 representative and distinct hydraulic conductivity
- 20 values to the upper fine sand unit and the lower
- 21 sand and gravel unit.
- 22 So the first question is: Has this been
- 23 done? Have you done this in updating your RDGM 4?
- JASON LEIBBERT: Well, do you have our
- 25 response to that comment with you?

```
1 LYNN MOORER: I'm asking you what your
```

- 2 response is, that's the point of this meeting.
- JASON LEIBBERT: I'll tell you my
- 4 response, I'm just asking if you actually read our
- 5 response?
- 6 LYNN MOORER: I haven't seen it, no, it
- 7 has not been provided to the public.
- JASON LEIBBERT: You don't have the
- 9 responses to the -- to the regulator's comments?
- 10 LYNN MOORER: Mr. Leibbert, that's what we
- 11 asked you -- we're asking this meeting for, and we
- 12 ask --
- JASON LEIBBERT: It's in the response,
- 14 we'll get there.
- 15 LYNN MOORER: Will you please be so kind
- 16 as to allow me to just state what I need to and I
- 17 will not interrupt you.
- 18 I'm just following up, asking do you have
- 19 specific information on this point? If you have
- 20 handouts that are more specific like, for example,
- 21 the copy of your responses, those would be welcome.
- But you've made the assertion that you've
- 23 used the best available information. The last
- 24 documents that we've seen are the concerns raised by
- 25 Dr. Zurbuchen at DEQ as well as Mr. Marquess at EPA,

- 1 so we'd like to know where we are on those various
- 2 issues that they raised, and the first one hydraulic
- 3 conductivity.
- 4 JASON LEIBBERT: Okay. We'll get to that,
- 5 there's slides about the regulator's comments,
- 6 actually it may even be in the next couple of ones.
- 7 Let's just wrap up Saunders County, and we'll go to
- 8 the regulator's comments in just a minute.
- 9 LYNN MOORER: So are you going to answer
- 10 my question --
- 11 JASON LEIBBERT: I will answer it.
- 12 LYNN MOORER: -- in a couple of slides?
- Thank you.
- 14 JASON LEIBBERT: Next slide.
- 15 And here they are. Previous comments from
- 16 EPA and DEQ about the RDGM model.
- 17 So a lot of the comments from EPA and
- 18 especially Dr. Zurbuchen from NDEQ were on these
- 19 topics, and hydraulic conductivity is definitely one
- 20 of the hot-button topics that Dr. Zurbuchen sent us
- 21 comments about.
- 22 And we did respond to all of those
- 23 comments, and I'm not sure why you don't have those,
- 24 but I'll get to it, I'll answer the question.
- 25 Some of the other comments that we got

- 1 from the agencies were to revise the RDGM model to
- 2 include more of the outside influences, like City of
- 3 Lincoln and their plans to expand their well fields
- 4 and some of the other -- other outside influences
- 5 that weren't previously accounted for in the RDGM
- 6 model.
- 7 The other comments were to use the RDGM
- 8 model to better estimate the total cleanup time, and
- 9 we'll talk about that. That's especially hard for
- 10 anyone to do.
- 11 The numerical modeling, the MODFLOW code
- 12 does an excellent job of predicting where
- 13 groundwater will go and what direction and how fast,
- 14 but it's -- it needs -- it has a hard time
- 15 predicting where contamination will go and how fast
- 16 it goes, so we'll talk about that one.
- 17 Again, hydraulic conductivity is a big
- 18 one, Dr. Zurbuchen also requested a more detailed
- 19 sensitivity analysis to be performed on the model,
- 20 and there was a couple of comments about the
- 21 irrigation wells and how those were simulated in the
- 22 RDGM model.
- So we'll go through these and we'll get to
- 24 conductivity.
- So, again, the comment was to RDGM 4 isn't

- 1 big enough to account for all of the outside
- 2 influences.
- We've agreed to expand the size of RDGM 4,
- 4 basically goes from this big to this big, but
- 5 it's -- the objective of that is to include more of
- 6 the outside influences, and when we do the next
- 7 version of RDGM this year in 2006, this is something
- 8 that we'll do so that we can account for -- or
- 9 better account for City of Lincoln, the Platte West
- 10 Well Field, other municipalities, the Platte River,
- 11 some of those other outside influences.
- 12 Again, the -- the purpose of the RDGM
- 13 model is really to help us demonstrate whether or
- 14 not we have containment with our extraction wells
- 15 and are we really capturing all of the contaminated
- 16 groundwater the way we're supposed to.
- 17 And that's what the model is good for or
- 18 does a very good job of doing, is that it does an
- 19 excellent job of predicting where the groundwater
- 20 will go and how fast it'll travel and whether or not
- 21 it'll be captured in our extraction wells.
- 22 But we recognize the need to address the
- 23 total cleanup time. There's a lot of uncertainty
- 24 about is this project going to require a hundred
- 25 years or 130 years or 300 years. There's been a

1 couple of different attempts in the past to try to

- 2 do this kind of estimate, and again, with -- you
- 3 know, as Greg kind of described, you know, the model
- 4 is only as good as the information you put into it.
- 5 The groundwater flow part is relatively
- 6 easy. USGS and other agencies have set the
- 7 standards that everyone follows on that, that's a
- 8 relatively easy thing to do, is the groundwater flow
- 9 portion.
- 10 What's hard to do is the cleanup time and
- 11 how fast or how long is it going to take for us to
- 12 clean up all of this contamination, and honestly
- 13 it's going to take a long time. You know, is it
- 14 30 years, is it 50 years, is it 100 years; that's
- 15 kind of the question on the table.
- The work that's been done in the past
- 17 basically arrived at a conclusion of 130 years. We
- 18 want to try to do better than that. I don't think
- 19 anybody wants us to be out here 130 years from now
- 20 still pumping this groundwater.
- 21 So the first step is we're going to make
- 22 some modifications to the RDGM model to allow for
- 23 these kinds of different simulations to look at the
- 24 total cleanup time. It's a little bit different
- 25 than what we've talked about with the RDGM model in

- 1 that we'll -- we're going to start doing what Greg
- 2 kind of described, is the MODFLOW computer programs
- 3 can do the groundwater flow and directions and
- 4 velocities.
- We're going to have to start piggybacking
- 6 other programs on top of that to try estimate the
- 7 total cleanup time; that's something that's in our
- 8 plan.
- 9 URS, our contractor, that performs the
- 10 modeling is taking the first steps to start that
- 11 process, and so that's something we're going to work
- 12 out with the regulators, is try to come up with a
- 13 best estimate of how long this project is going to
- 14 take.
- So with conductivity, the bottom line
- 16 simple answer is yes, the RDGM will be revised to
- 17 account for different hydraulic conductivities.
- One of the things that's new since the
- 19 last time the RDGM model was updated was we now have
- 20 Extraction Wells 12 and 13 down here that didn't
- 21 used to be there obviously because they're
- 22 brand-new, and we have pumping information from
- 23 those wells that is new information that wasn't
- 24 available in the previous versions of the RDGM
- 25 model, so that's one area where we're getting more

- 1 information in response to this comment.
- 2 The University of Nebraska has some new
- 3 information for us to use, MUD has pumping
- 4 information that's new that'll be for us -- new for
- 5 us to use and for us to include in the model.
- 6 So I guess when I say that we're using the
- 7 best available information to simulate hydraulic
- 8 conductivities, that's exactly what we're doing, is
- 9 we're looking at all the possible sources of that
- 10 information.
- It's not just the work that we do, we look
- 12 for other people doing work in and around this area,
- 13 and based on what they're doing, if that's -- if we
- 14 think it's good information and it's something
- 15 that's going to help the RDGM model be better or do
- 16 a better job for us, we're going to include that
- 17 information in the model.
- Brian's specific comment about are you
- 19 going to assign a unique or discrete value to the
- 20 upper unit and the fine sands and the coarse sands;
- 21 I'm not the geologist on the project so I can't tell
- 22 you what those values are going to be, but I can
- 23 tell you that we're going to use the best available
- 24 information and the most up-to-date information in
- 25 the RDGM model.

1 LYNN MOORER: Mr. Leibbert, could you just

- 2 clarify for me and for the lady who also asked a
- 3 similar question, when was your last update of your
- 4 site model? Is that the RDGM 4, is that the last
- 5 run of it --
- 6 JASON LEIBBERT: Go back.
- 7 LYNN MOORER: -- that you would consider a
- 8 full model or what is your last published site
- 9 model?
- JASON LEIBBERT: The RDGM 4 report was
- 11 published in 2004. Between 2004 and 2005 we started
- 12 the design effort for the new extraction system to
- 13 go down here.
- To help us with that design effort, we
- 15 took the RDGM 4 model, we added some more
- 16 information into it, we used it very much focused on
- 17 what was going on down here.
- We were -- in 2005 we really weren't
- 19 looking at other things. We were really focused
- 20 down here on the Load Line 1, so we made
- 21 modifications to RDGM 4 to help us with this design,
- 22 and those modifications and those conclusions and
- 23 results of all that are published in the Load Line 1
- 24 design documents.
- 25 And now in 2006, now we're going to go

1 back and take a whole new look at the whole system.

- 2 You know, last year in 2005 we were really working
- 3 down here, now this year is when we expand the model
- 4 size to include an area that's even larger than
- 5 this, and that'll be the next update that's coming
- 6 later this year.
- 7 LYNN MOORER: In this 2005 update that you
- 8 did, did you address and carry out all the
- 9 directives that Dr. Zurbuchen issued in April of
- 10 2004, and that Mr. Marquess issued on behalf of EPA
- 11 in 2004?
- JASON LEIBBERT: Yes.
- 13 LYNN MOORER: You did -- you carried out
- 14 all of their instructions or requests?
- JASON LEIBBERT: No, not every single one.
- 16 We used the ones that made the most sense to help us
- 17 do this job down here.
- 18 About half the comments we have
- 19 incorporated already into the RDGM model, about the
- 20 other half of the comments are things that will be
- 21 incorporated this year because they didn't help us
- 22 with Load Line 1 design or we didn't have enough new
- 23 information to satisfy that comment.
- 24 Again, those are things that we're going
- 25 to do this year. We've got all those comments. I

1 still I don't believe that you really don't have all

- 2 the responses, but we did respond to every single
- 3 one of those comments.
- 4 LYNN MOORER: I would be happy to have a
- 5 copy of it if you -- here tonight. If you have a
- 6 copy to provide me that would be appreciated. I'm
- 7 sure other people would like to see it.
- 8 JASON LEIBBERT: No, I don't have copies
- 9 to hand out of that tonight, but we can make those
- 10 available.
- 11 But when we responded to all those
- 12 comments last year, we responded to them either
- 13 affirmatively that, yes, we agree with this comment
- 14 and we'll make all these changes, or we responded
- 15 to, we'll make all those changes but it'll be in the
- 16 next verse of the model.
- 17 LYNN MOORER: Since you have told us that
- 18 you use your site model to manage the site and for
- 19 decision making, will a completely updated site
- 20 model be developed that addresses all the comments
- 21 and directives from the regulators before the Corps
- 22 installs the 100 monitoring wells on the eastern and
- 23 southern portions on the site?
- JASON LEIBBERT: Yes, we will have a new
- 25 model that addresses all those old comments from EPA

1 and NDEQ. Will it be done before the 100 new

- 2 monitoring wells go in, no, probably not.
- 4 efforts; they're not hinged on each area. We can
- 5 make improvements on the RDGM model, we can address
- 6 all the comments from EPA and DEQ, and we can
- 7 install the new monitoring wells independently;
- 8 they're not tied hand in hand.
- 9 LYNN MOORER: That does seem to be a major
- 10 change from what Richard McCollum, a former Army
- 11 co-chair of the RAB told us in November and in
- 12 February -- November 2004 and in February 2005.
- 13 He said that this is a site model. The
- 14 RDGM -- your own site model is one that you will use
- 15 to cite the monitoring wells that you consider to
- 16 be -- that is he considered to be essential to
- 17 monitor MUD effectively.
- 18 It does seem to be a concern that has been
- 19 raised at previous meetings, as you may recall, that
- 20 you do an adequate assessment or an adequate
- 21 evaluation of the situation here, which includes
- 22 incorporating all the regulator's concerns and
- 23 comments before you decide where you need those
- 24 monitoring wells and at what depths, et cetera.
- It doesn't seem to make a lot of sense to

1 say you're going to install these wells but you

- 2 don't even have an updated site model that addresses
- 3 all the regulator's concerns before you start doing
- 4 that.
- 5 JASON LEIBBERT: Well, what we have is the
- 6 culmination of all of this work up into about this
- 7 point. We know enough about what's going on over
- 8 here to know where to put monitoring wells. Those
- 9 locations are subject to input from the other
- 10 agencies.
- 11 LYNN MOORER: Mr. Marquess, do you agree
- 12 with that? Do you agree that there's enough
- 13 information now that's been provided to you and to
- 14 DEQ to be confident that where those 100 monitoring
- 15 wells are going to go, you know will be put in the
- 16 right place or an optimum place to accomplish the
- 17 purpose?
- 18 SCOTT MARQUESS: Well, there is no right
- 19 answer to develop -- you know, you're not going to
- 20 have a single right answer about what the monitoring
- 21 program has to look like or where a well has to be.
- So, yes, we can site monitoring wells
- 23 based on information that's available and in hand.
- 24 I don't think the need for an updated or revised
- 25 groundwater model is essential to be able to

1 adequately site the wells that we -- that are

- 2 planned at, you know, the end of the year for the
- 3 southern and eastern boundaries of the plume.
- 4 LYNN MOORER: Does DEQ agree with you, do
- 5 you know?
- 6 SCOTT MARQUESS: We have not discussed
- 7 that.
- 8 LYNN MOORER: With DEQ, DEQ has not
- 9 weighed in on that?
- 10 SCOTT MARQUESS: We haven't had any
- 11 discussions about that in any recent time frame.
- 12 LYNN MOORER: Thank you.
- JASON LEIBBERT: One of the other big
- 14 comments from Dr. Zurbuchen was he didn't think that
- 15 the last RDGM report in 2004 did a good job of
- 16 documenting the sensitivity analysis, so that's
- 17 something that we'll do again in 2006, and address
- 18 Dr. Zurbuchen's comments by doing more of a
- 19 sensitivity analysis more in the way that he
- 20 described.
- 21 LARRY ANGLE: Larry Angle, Lower Platte,
- 22 North NRD.
- I guess as a case in point, first off on
- 24 the Saunder's County -- surprised no one here is
- 25 representing the county tonight, but, anyway, the

1 Lower Platte North and also the City of Ashland

- 2 contributed funding for that study.
- 3 Our big concern also is a streambed
- 4 conductance of the Platte River, and is it possible
- 5 to actually do some sampling and determine some of
- 6 those perimeters before MUD goes online?
- 7 I know in the past the university and USGS
- 8 has done some of the studies similar to this I
- 9 believe on the Republican River, and I guess I would
- 10 like to see maybe some actual data collected in the
- 11 target area between the MUD well fields, and
- 12 hopefully get a better answer on streambed
- 13 conductance.
- 14 JASON LEIBBERT: Larry, and you correct me
- 15 if I'm wrong, you may know more about this than I
- 16 do, in 1989 there was a riverbed conductance test
- 17 performed, a real world test, and it was performed
- 18 by TZA, was the name of the firm or the contractor
- 19 that did that, and they did it for the City of
- 20 Lincoln.
- 21 And so I can't say that I know what
- 22 stretch of the Platte River they were looking at,
- 23 but that's basically the best available real world
- 24 information that -- for anybody to use, whether it's
- 25 us or MUD or anyone else who's studying the

1 groundwater in this area. That is the best record

- 2 that's available, that's what we used in your work.
- 3 SCOTT MARQUESS: Larry, I was just looking
- 4 back at the MUD -- the Phase 2 model recommendations
- 5 for the MUD model, that is recommendations for
- 6 future field data pumping tests to quantify
- 7 conductance of the riverbed materials near the well
- 8 field, so that's -- I'm not sure that there's a
- 9 commitment to do that actually imbedded here, but
- 10 that was one of the comments I think we had made, so
- 11 there's like three bullets in terms of the
- 12 recommendations.
- 13 LYNN MOORER: What are you reading from?
- 14 SCOTT MARQUESS: I'm sorry, that was
- 15 Section 8.3.3 of the MUD Phase 2 Model Report, one
- 16 of their recommendation -- they had three
- 17 recommendations for future field data.
- 18 One was pumping tests to quantify conductance of
- 19 the riverbed materials near the well field, which is
- 20 what Mr. Angle's question related to; additional
- 21 flux target measurements in creeks and rivers, and
- 22 additional surface water measurement surveys, are
- 23 what was reported in the MUD report.
- 24 GERALD VERDUSKA: Gerald Verduska
- 25 (phonetic).

```
1 Don't spend a lot of time on this because
```

- 2 maybe most people in the room know the answer to
- 3 this question, but I'm trying to understand this
- 4 Platte River conductance a little better.
- 5 Does the MUD model show relative mirroring
- 6 of the upper level of the aquifer; do the water in
- 7 those respond to level in the Platte River; in other
- 8 words, if the Platte River goes up and it go down a
- 9 couple feet, do those wells, the upper level of the
- 10 water goes down a couple feet, does it mirror?
- 11 And if it does, how about the contaminated
- 12 area, the plume zone, does that level mirror the
- 13 wells and the river too?
- 14 JASON LEIBBERT: When we talk about
- 15 riverbed conductance, just for a minute, what we're
- 16 talking about is if there's a pumping influence
- 17 outside of the river, like MUD's well fields or
- 18 anyone else's, the question that the model is trying
- 19 to answer is when this well pumps, you know, let's
- 20 just say a lot, when it pumps a lot of water, how
- 21 much of that water comes out of the river versus how
- 22 much of that water comes out of the aquifer that
- 23 that well actually sits in, and the model has a way
- 24 to estimate that, and it's this conductance factor.
- 25 And, again, we have some real world

1 information available to us to help simulate that in

- 2 the model, but there's not a great deal of
- 3 information available, and, again, that's -- as
- 4 Scott pointed out, that's one of the things that
- 5 needs to be done in the future is to better estimate
- 6 that.
- 7 So as this well or any one of these wells,
- 8 as this well pumps, a certain amount of that water
- 9 comes out of the river and a certain amount of it
- 10 comes out of the formation.
- 11 Well, I shouldn't speak about the MUD
- 12 model because it's not mine, you know. I can't
- 13 really tell you what it does or doesn't say about
- 14 this specific question; I'll just talk in general.
- In general, you would think the answer
- 16 would be yes, that when there's lower flows in the
- 17 Platte River, whether it's a drought or any -- for
- 18 whatever reason, if there's a smaller amount of
- 19 water in the Platte River, that the percentage that
- 20 comes from the Platte goes down in this well, and
- 21 this well picks up more water from the aquifer and
- 22 less from the river.
- 23 And vice versa, if the Platte River is
- 24 very high, whether it a be a flood or whatever it
- 25 has much more water than normal, it would show up in

- 1 this well as well.
- 2 GERALD VERDUSKA: So what I'm getting at
- 3 is from a layperson's point of view maybe it's
- 4 oversimplification, but if you saw the river go down
- 5 two feet and within a relatively short amount of
- 6 time the water in those wells went down two feet,
- 7 you would probably assume there's a lot of
- 8 conductance between the two.
- 9 JASON LEIBBERT: Right.
- 10 GERALD VERDUSKA: And I was just
- 11 wondering, does the model show that?
- 12 JASON LEIBBERT: It -- again, it -- I
- don't know, because it's not mine, I don't know what
- 14 it says exactly, but it should -- that should be a
- 15 true statement the way you described it, is that
- 16 when the river goes down the water level in here
- 17 should go down.
- The only exception to that would be you
- 19 may not really see a drop in the water level here
- 20 because it'll get more from the aquifer to make up
- 21 the difference.
- 22 So the water level in the river may drop
- 23 dramatically in a short amount of time, but in the
- 24 well over here the water level may stay steady
- 25 because more of it is coming from the aquifer and

- 1 not from the river.
- 2 GERALD VERDUSKA: Well, that's what I was
- 3 getting at, it seems like that's one of the most
- 4 important things of the modeling; if you see the
- 5 plume varying according to the rest of the aquifer
- 6 in those wells, it shows a great conductance between
- 7 the whole works.
- 8 And like the water level in the plume,
- 9 what elevation above sea level is that compared to
- 10 the elevation in the wells, do you know that?
- JASON LEIBBERT: Well, I don't have a
- 12 number. I can't tell you what the elevation is,
- 13 but --
- 14 GERALD VERDUSKA: Seems like that'd be a real
- 15 important number because you'd know if it's a
- 16 uniform, if it's connected to the aquifer.
- JASON LEIBBERT: Sure, we have water
- 18 levels for all these wells. I just -- I can't tell
- 19 you what they are because there's 300 and some odd
- 20 wells, but you're on the right track in that -- and
- 21 this is what the Saunders County consultant talked a
- 22 lot about in his comments, was the reason why this
- 23 riverbed conductance is so important is if these
- 24 wells in the Platte West Well Fields, if they get
- 25 most of their water from the river then that means

- 1 they'll have less of an effect on us.
- 2 If they're not getting a lot of water from
- 3 the river, and they're really getting a lot of water
- 4 from the formation, then that means they'll have a
- 5 stronger effect on us, and that's why that's an
- 6 important perimeter, and that's why he had it in his
- 7 comments, that's why MUD's acknowledged that in
- 8 their Phase 2 report, you know, that's why there's a
- 9 need for more work.
- 10 GERALD VERDUSKA: Okay. That's all.
- JASON LEIBBERT: It is an important
- 12 concept.
- 13 GERALD VERDUSKA: I'm not up on this so much
- 14 that that just seems like that'd be the very first
- 15 test you'd do, is just drop a tape down there until
- 16 you touch the water and see what's in the river, and
- 17 you know there's a lot of conductance then. That's
- 18 enough on that. Thanks.
- 19 JASON LEIBBERT: And we do do that because
- 20 there's gauging stations on the river, and as Greg
- 21 described in the calibration step we get water
- 22 levels --
- 23 GARTH ANDERSON: Your mike is off.
- JASON LEIBBERT: Okay.
- 25 So we do that; we take water level

1 measurements from all the wells, we drop the tape

- 2 down there and we get the water level. We do that
- 3 and compare it to measurements from the river, from
- 4 the gauging stations at the same time on the same
- 5 days.
- 6 We also compare that, there's gauging
- 7 stations on Johnson Creek, there's -- I can't
- 8 remember if there's a gauging station on Silver
- 9 Creek, I think there's one on Wahoo Creek.
- 10 So all those -- all those measurements all
- 11 at the same time are important for that exact
- 12 reason, you're exactly correct.
- 13 Another comment from --
- 14 GARTH ANDERSON: Let's go with old
- 15 reliable here.
- JASON LEIBBERT: The number of irrigation
- 17 wells and the way they're simulated in the model is
- 18 also an important factor, and the reason is pretty
- 19 obvious.
- There's a number of irrigation wells in
- 21 this area, and they all pump at different times of
- 22 the year and they all pump at different rates, and
- 23 they're important because they're taking water out
- 24 of the aquifer, and it effects how well our
- 25 extraction wells do their job.

```
1 So a lot of the comments from
```

- 2 Dr. Zurbuchen were to do a better job in the RDGM
- 3 model of simulating those irrigation wells.
- 4 The short answer is is that in the next
- 5 version of the model, when we grow the model because
- 6 we're going to expand it in size and make it bigger
- 7 than it is now, we're going to need to go back and
- 8 find all those irrigation wells in the new areas
- 9 that we didn't previously have in the RDGM model.
- The way we do that is we can get that
- 11 information from the state registered well database,
- 12 we can get that kind of information from the
- 13 university. There are some resources available to
- 14 get that kind of information, and that's what we'll
- 15 use and we'll -- again, we'll try to use the best
- 16 available information.
- 17 LYNN MOORER: Do you -- can you tell us
- 18 roughly for a sense of comparison in your RDGM 4,
- 19 roughly how many irrigation wells did you use on
- 20 that one, and then did you add more when you did
- 21 your partial update in 2005?
- JASON LEIBBERT: You know, no, I don't
- 23 know the number of irrigation wells.
- 24 LYNN MOORER: Do you have a rough idea of
- 25 what the total pumpage was and for how many months?

```
JASON LEIBBERT: Without looking at it I
```

- 2 think, you know, when we simulate it, we pump them
- 3 for two or three months out of the year just like a
- 4 normal irrigation season would be, and the total
- 5 combined pumpage again, I don't know the number off
- 6 the top of my head without looking it up.
- 7 LYNN MOORER: I've got your report here.
- JASON LEIBBERT: Okay.
- 9 LYNN MOORER: I'm interested in you
- 10 telling us some of these specifics, because I know
- 11 that this discussion on irrigation wells is going to
- 12 be something we want to go into in more detail on
- 13 MUD's models, okay, so we would appreciate having
- 14 this comparison. These irrigation well issues are
- 15 big.
- JASON LEIBBERT: I don't have that report.
- 17 If I could borrow it I could find how many wells are
- 18 in there.
- 19 LYNN MOORER: You may borrow it.
- JASON LEIBBERT: Is that the whole thing?
- 21 LYNN MOORER: As far as I know. I mean, I
- 22 don't have your things on disks there, but --
- JASON LEIBBERT: Well, this is probably
- 24 going to take a few minutes. Someone will have to
- 25 find the table or find the figure that's got the

1 number of wells posted on it. It's not immediately

- 2 available to me. Scott's got it.
- 3 SCOTT MARQUESS: Let's not wait on Scott
- 4 now.
- 5 LYNN MOORER: Right. Go ahead.
- 6 JASON LEIBBERT: Okay. Next slide.
- 7 So here we are on the MUD --
- 8 LYNN MOORER: Mr. Leibbert, excuse me,
- 9 could I ask a couple of questions more generally
- 10 about your model before we move on to MUD's model?
- JASON LEIBBERT: Sure.
- 12 LYNN MOORER: All right. At the
- 13 February 22nd, 2005, RAB meeting, Richard McCollum
- 14 stated, people who are expert in the field have
- 15 reviewed our site model and have determined it to be
- 16 adequate.
- 17 I'm wondering who are the people who are
- 18 expert in the field who have reviewed it and
- 19 determined it to be adequate?
- JASON LEIBBERT: Well, I can tell you all
- 21 the reviewers, but I can't tell you their opinion,
- 22 whether or not it's adequate, but Dr. Brian
- 23 Zurbuchen reviewed it, EPA reviewed it, the Corps of
- 24 Engineers Center of Expertise for Hazardous and
- 25 Intoxicate Waste reviewed it, and I think that's it

- 1 during the development.
- 2 LYNN MOORER: My question is specific;
- 3 that is, who is the -- who are -- is or are these
- 4 experts that Mr. McCollum was referring to who have
- 5 deemed it to be adequate?
- 6 Clearly I would think a fair
- 7 characterization of Dr. Zurbucken's comment is that
- 8 he did not find it adequate, nor did Mr. Marquess's
- 9 comments in April of 2004 find them adequate, so
- 10 what expert in the field is the one that
- 11 Mr. McCollum is saying has found your site model to
- 12 be adequate?
- JASON LEIBBERT: Yeah, I don't have an
- 14 answer for that, I don't know.
- 15 LYNN MOORER: All right. Will you please
- 16 follow up on that, and so then as part of that would
- 17 you then determine when were -- tell us when these
- 18 reviews occurred and where these reviews were
- 19 published --
- JASON LEIBBERT: Well --
- 21 LYNN MOORER: -- the ones that found your
- 22 site model to be adequate as of February 22nd, 2005?
- JASON LEIBBERT: Well, you've got a lot of
- 24 the comments from DEQ and EPA.
- 25 LYNN MOORER: I don't mean to belabor the

- 1 point, I'm just saying he said somebody has found
- 2 your site model to be adequate; everything that we
- 3 have seen from the regulators that we know of here
- 4 have said it's not adequate.
- 5 So we're interested in knowing who he was
- 6 meaning when he said experts in the field have found
- 7 our site model to be adequate.
- JASON LEIBBERT: The model is adequate;
- 9 however, the model can be improved in ways, and,
- 10 again, this is what we talk about, this is what Greg
- 11 talked about, modeling is an iterative process.
- There is no stopping point in the process,
- 13 there is no end point where you say this model is
- 14 adequate or this model is not adequate.
- 15 You go through this continuous improvement
- 16 process and you look at the model, you collect
- 17 measurements from the real world, you take real
- 18 world water level datas, you take real precipitation
- 19 rates, you take real irrigation pumping rates, and
- 20 you put that into the model and you see how good a
- 21 job the model does in matching those.
- 22 So it's -- you know, is the model adequate
- 23 or not, yes the model is adequate. Do we need -- is
- 24 there more work to be done on the model, yes,
- 25 there's more work to be done on the model.

1 Every year when we get new information

- 2 it's our job to put that back into the model and
- 3 verify if the model is still doing a good job or
- 4 not. It's this cycle of continuous improvement
- 5 there is never really a stopping point for the
- 6 model.
- 7 LYNN MOORER: I have one more follow-up
- 8 question, and then I'll leave this one alone for
- 9 now.
- 10 Mr. McCollum also stated at that
- 11 February 22nd, 2005, RAB meeting, he said, there's a
- 12 possibility of having further peer review of it just
- 13 to make certain we haven't missed something.
- 14 We talked about the possibility of asking
- 15 the USGS, perhaps in a location you know, kind of
- 16 not here, you know, that hasn't been involved; in
- 17 other words, to get some totally fresh eyes on it.
- 18 We're looking at that because we do hear
- 19 your concerns. We want to make sure we have as good
- 20 a model as we can. So that's the end of the quote
- 21 from Mr. McCollum.
- 22 Whose totally fresh eyes has the Corps
- 23 gotten to review its site model?
- 24 JASON LEIBBERT: We have not gone for any sort
- 25 of outside peer review other than the EPA and NDEQ

- 1 at this point.
- 2 LYNN MOORER: Thank you.
- 3 WANDA BLASNITZ: I guess I was wondering
- 4 because you had said that this is a numerical model,
- 5 and Mr. Steele had indicated that the analytical
- 6 model is a better model, and I think you said too
- 7 that numerical models are not that good at
- 8 predicting where the contaminant will go and how
- 9 fast it will go, so have you thought about going to
- 10 an analytical model?
- 11 JASON LEIBBERT: I may enlist Greg to help
- 12 me.
- Greg also described the analytical
- 14 modeling in that it's very simplistic, and the only
- 15 way you can get the analytical model to work is by
- 16 making a number of assumptions that decrease the
- 17 complexity of the problem you're trying to model.
- 18 Their -- analytical models are better in
- 19 the sense that they can be easier to use and they
- 20 can be more simple and it doesn't require as much
- 21 work, but analytical models have -- they're only
- 22 capable of doing certain things, and for a site
- 23 that's this large and this complicated, we have to
- 24 go above and beyond what the analytical models can
- 25 do, and that's what the computer numerical modeling

- 1 does, is --
- 2 You know, Greg had a number of different
- 3 equations, and if you're doing a very simple problem
- 4 maybe you only need to do that equation once, but if
- 5 you're doing a problem like this, you need to do
- 6 that same equation hundreds of thousands of times,
- 7 and that's what the computer does, is automates all
- 8 those equations and arrives at a numerical solution
- 9 that way.
- 10 It's -- I'm not so sure it's a case of one
- is better than the other; it's that analytical
- 12 models have their place and are good for some things
- 13 but not everything.
- 14 Numerical models have their place and
- 15 they're good for some things, but they're not good
- 16 for everything, and we're in the situation that we
- 17 need a numerical model, a computer model to do
- 18 something that's as complicated as this, so that's
- 19 the first part.
- 20 The second part about -- the model has a
- 21 hard time predicting the total cleanup time, and it
- 22 really goes to what mechanisms govern the spread of
- 23 contamination, and based on the operational history
- 24 of the site, based on the information that we get
- 25 from our sampling, you know, you can say that

- 1 contamination was released up here, and then over
- 2 the course of 40 or 50 years it's traveled in this
- 3 direction.
- 4 The groundwater model, the RDGM 4, which
- 5 is a numerical model, does a very good job of
- 6 predicting this direction, and it does a very good
- 7 job of predicting how fast it's going to get there.
- 8 But what it doesn't yet take into account
- 9 is all the other mechanisms that affect the
- 10 contamination, and probably the easiest way to
- 11 describe this is a contaminant like TCE, is -- it's
- 12 an organic compound, and it likes to attract or
- 13 stick to other organic things in the aquifer.
- So soil has a lot of natural organic
- 15 material in it, that's what makes it good for
- 16 agricultural purposes because it has a lot of
- 17 organics.
- 18 The TCE will -- when it's in the
- 19 groundwater and it's moving through the aquifer, it
- 20 likes to grab ahold of those other organic materials
- 21 in the soil and just kind of stays there.
- The water continues to move, but the TCE
- 23 gets hung up and doesn't move as fast as the water
- 24 does, and that's -- that's kind of an
- 25 oversimplification. That's another -- another

1 aspect of the model, and Greg had this in his slide

- 2 when he talked about you kind of start with the MODFLOW
- 3 code and you do your hydraulic, you do your
- 4 groundwater model for flow and directions and
- 5 velocities and things.
- 6 And then the next step is you go kind of
- 7 above and beyond that, and you do contaminant
- 8 transport, you do -- I can't remember what else Greg
- 9 had in his slide, heat and surface flow and other
- 10 things.
- 11 Those are kind of the next level. You
- 12 know, after you -- you've done your groundwater
- 13 model, you go to the next step and you do
- 14 contaminant fate and transport models.
- We've done that in the past --
- 16 VIDEOGRAPHER: I need to change my tape.
- 17 GARTH ANDERSON: Sure. Actually since
- 18 we've been at it for two hours this might be a good
- 19 chance to take a quick break.
- 20 (Off the record.)
- JASON LEIBBERT: Everybody ready?
- 22 Before we talk about MUD, just -- we were
- 23 talking about analytical versus numerical modeling,
- 24 and Greg had a clarification that he wanted to make.
- 25 GREG STEELE: Yes, you had mentioned that

1 I had said that analytical models were better than

- 2 numerical models, and it really depends on the
- 3 situation.
- 4 The analytical models are very useful
- 5 tools, but it's the situation that you need.
- 6 They're really good for the simplistic aquifers, but
- 7 as far as better than numerical models, that's not
- 8 the case at all.
- 9 JASON LEIBBERT: Okay.
- 10 JOHN KNAPP: And the question is pretty
- 11 general. If you make an assumption, for instance
- 12 you're talking about the well -- the irrigation
- 13 wells, and so, I mean, in the real world the water
- 14 is going someplace, and if you've made a mistake in
- 15 your -- say, for instance, you assume the wells pump
- 16 at their rated capacity when they were drilled and
- 17 they're only being pumped, say, actually at
- 18 60 percent or something like that, how does this get
- 19 squared away on a model as -- and not -- you know,
- 20 you're -- this water -- you're picking up this water
- 21 someplace else, and so how do you get these things
- 22 back in the same --
- JASON LEIBBERT: Okay. That's a good
- 24 question.
- 25 Greg had it on one of his slides. It's

- 1 called the water balance, and the question is
- 2 exactly the way you posed it; where does the water
- 3 go and where does it come from?
- 4 Water comes from the up gradient direction
- 5 at -- here at this site it basically moves in this
- 6 direction, so water that's down here today used to
- 7 be up here at some point in the past, so water flows
- 8 this direction.
- 9 Water also comes from precipitation, and
- 10 then the other way water gets into the formation is
- 11 through irrigation, you know, you irrigate, you pump
- 12 water out of the ground, you spray it back onto the
- 13 ground, and a certain percentage of that water
- 14 percolates down into the ground; some of it
- 15 evaporates, some of it percolates down.
- We're never going to know the exact
- 17 pumping rate for every single irrigation well
- 18 because every person out here that -- that farms and
- 19 has an irrigation well does it according to his or
- 20 her schedule.
- 21 You know, we don't know how much they pump
- 22 when they pump them, we don't know how often they
- 23 turn them on. We know in general, you know, they're
- 24 a three-day on/five-day off cycle or some other
- 25 cycle that each individual farmer, you know, decides

- 1 himself.
- 2 But what we can do is we can make some
- 3 estimates. You know, in general, we know what the
- 4 average is; three days on/five days off for an
- 5 average of two months out of the year or maybe two
- 6 and a half months out of the year.
- 7 The flow rate is a little trickier to
- 8 estimate because somebody may put their irrigation
- 9 well at a thousand gallons per minute, and someone
- 10 else may pump their irrigation well at only
- 11 200 gallons a minute, and where's the average in
- 12 between that, sometimes that's hard to determine
- 13 when there's -- when there's so many irrigation
- 14 wells.
- So the way we do that is we -- we make our
- 16 estimate and we put that into the model and then we
- 17 run the model, then see what kind of predictions it
- 18 makes, and then as Greg described, it's called the
- 19 calibration process, the model tells us -- the model
- 20 basically says I think the water level at this
- 21 location should be, you know, 57.8 feet above sea
- 22 level, and we go out and we actually collect a
- 23 measurement, and it's 59 feet above sea level, so
- 24 it's different by a small amount.
- 25 Some amount of difference is acceptable as

- long as it's very small and it's very -- it's very
- 2 orderly. As long as there's no random fluctuations
- 3 that go all over the place, some amount of
- 4 difference is okay.
- 5 And there is kind of a -- there are some
- 6 limits that -- you know, the academic and the
- 7 modeling community have defined for what -- what is
- 8 and is not an acceptable range.
- 9 You know, all the work we try to do we --
- 10 we work with the model and we try to collect enough
- 11 information from the real world to try to make that
- 12 difference as small as we can get it.
- 13 Is it a hundred percent perfect match for
- 14 every single well out here, no, it's not going to be
- 15 a hundred percent perfect match, but it is going to
- 16 be within the acceptable limits, and if it's not,
- 17 that means we have more work to do, and we need to
- 18 go through that process again and take more
- 19 measurements and refine the model to make it better.
- 20 So it's kind of an ongoing, continuous
- 21 process that you're also trying to get closer,
- 22 you're trying to make that difference as small as it
- 23 can be.
- One of the other things to talk about
- tonight is the MUD's 2004/2005 model.

```
1 LYNN MOORER: Did you have -- before you
```

- 2 move on to that, did you have an -- the answer for
- 3 me then on the irrigation wells on the RDGM 4, both
- 4 the number and the rate or the pumpage?
- 5 JASON LEIBBERT: Did you get your
- 6 document?
- 7 LYNN MOORER: Yes, I did, so what's the
- 8 answer?
- 9 JASON LEIBBERT: Well, I think Table 4-1
- 10 shows that there's 57 supply wells in the modeled
- 11 area.
- 12 LYNN MOORER: Fifty-seven.
- 13 JASON LEIBBERT: And it has an approximate
- 14 rate for each one of them, and the combined total is
- 15 not shown. So you can add them all up. Table 4-1
- 16 has all the pumping rates for those wells.
- 17 LYNN MOORER: So you only looked at
- 18 57 irrigation wells for your RDGM 4 --
- 19 JASON LEIBBERT: Yes.
- 20 LYNN MOORER: -- is that accurate?
- JASON LEIBBERT: And the reason is --
- 22 LYNN MOORER: My goodness.
- JASON LEIBBERT: -- because the RDGM model
- 24 is very small and it's really only focused on this
- 25 site in our extraction system. We're not trying to

1 model all of Saunders County, we're not trying to

- 2 model everything that MUD is trying to do in their
- 3 model.
- 4 You know, you probably know MUD has
- 5 hundreds, and there's some controversy about how
- 6 well they describe that in their document, the
- 7 number of irrigation wells that they have in there,
- 8 but they have hundreds because their model is
- 9 probably ten times the size of our model.
- 10 When we do the next version this year,
- 11 2006, again, all the comments from DEQ and EPA,
- 12 we're to make the RDGM model bigger to include more
- of these things, and that's what we're going to do,
- 14 that's actually already started.
- 15 LYNN MOORER: So when specifically are you
- 16 going to produce the update of the RDGM this year,
- 17 precisely when, like what month?
- 18 JASON LEIBBERT: I think -- I'd have to
- 19 check, I think the schedule says that we give a
- 20 document to EPA in September of this year.
- 21 LYNN MOORER: And it'll be published at
- 22 that time? What's the cutoff for the data then that
- 23 you're going to be plugging into that? What is the
- 24 cutoff for the data that you will be plugging into
- 25 that?

```
JASON LEIBBERT: Well, I'm not sure
```

- 2 there's a date. I think what you're asking is is
- 3 there -- is there like a time cutoff whereas of this
- 4 date we don't have any more new information?
- 5 LYNN MOORER: Well, let me rephrase it:
- 6 What would be the last possible date at -- in which
- 7 or at which -- on which you could plug in more
- 8 updated information in order to come up with your
- 9 September RDGM 5, is that what you would call it?
- JASON LEIBBERT: Yeah, actually -- well,
- 11 RDGM 5 or RDGM 2006 or --
- 12 LYNN MOORER: Anyway --
- JASON LEIBBERT: -- Groundwater
- 14 Model 2006, I'm not sure what we'll call it.
- 15 LYNN MOORER: What would the cutoff date
- 16 be --
- JASON LEIBBERT: The cutoff date --
- 18 LYNN MOORER: -- for that?
- 19 JASON LEIBBERT: -- I think to try to
- 20 answer the intent of the question, I think for this
- 21 March and this April we're doing all this
- 22 investigation work here, and part of that is to
- 23 collect water levels from all of the monitoring
- 24 wells, and that -- we do that ourselves. We
- 25 coordinate that with the NRD because they have a

1 number of wells in their area that they take

- 2 measurements at.
- I can't remember if USGS does that, so us,
- 4 NRD, USGS, MUD is probably going to take water
- 5 levels from their wells.
- 6 LARRY ANGLE: City of Lincoln.
- 7 JASON LEIBBERT: City of Lincoln.
- 8 LARRY ANGLE: And the university also has
- 9 a couple.
- 10 JASON LEIBBERT: Right, the university, so
- 11 all those combined, we basically work together to
- 12 take all those measurements hopefully within a
- 13 couple days of each other. Basically the same week
- in -- are we going to do that in March?
- 15 LARRY ANGLE: Yeah, we're doing it next
- 16 Wednesday.
- JASON LEIBBERT: So next Wednesday we'll
- 18 get water levels from all these wells in the whole
- 19 area. It -- that is going to be the calibration
- 20 target that URS is going to use in this new version
- 21 of the RDGM model.
- They're going to -- and when we talk about
- 23 calibration, basically we -- you know, next
- 24 Wednesday we're going to take water level
- 25 measurements from all these wells, and then URS is

1 going to use that as their calibration target for

- 2 the model.
- 3 So they're going to run the model with new
- 4 conductivity information and new riverbed estimates
- 5 and those kinds of things to see if it can match
- 6 those water levels that we collect on next
- Wednesday.
- 8 So in a sense, maybe that's the cutoff
- 9 time that you're thinking of. You know, we have new
- 10 information from last year, new information from
- 11 2004 that hasn't been incorporated, so it's
- 12 basically everything up to this point, and the water
- 13 level survey next week is one of the key calibration
- 14 targets that'll be used.
- So between March and September is when URS
- 16 and we kind of, you know, go to the computer and do
- 17 the work and write the report and, you know, we
- 18 review the report internally before we submit it to
- 19 anyone else, and those kinds of things, so --
- 20 LYNN MOORER: Would you walk us through
- 21 the MUD model, 2004 model now, each of your comments
- 22 for that --
- JASON LEIBBERT: Well --
- 24 LYNN MOORER: -- and then walk us through
- 25 the 2005 model comments that the Kansas City Corps

- 1 had --
- JASON LEIBBERT: Well, I didn't --
- 3 LYNN MOORER: -- specifically?
- 4 JASON LEIBBERT: Not really going to do
- 5 that. What we've got here is the '04 and '05 model,
- 6 you know, we reviewed both of those and we submitted
- 7 comments on both of those, and basically all of the
- 8 Corps comments fall into these general topics.
- 9 And this slide and the next slide, these
- 10 are the comments or these are the questions that we
- 11 asked MUD either last year for the 2004 version of
- 12 the model, you know, and then again recently this
- 13 year for the 2005 version of the model.
- We asked them to evaluate pumping rates
- 15 higher than the permitted average allowed by the
- 16 permits, to evaluate those scenarios. We asked them
- 17 to do a different or a better calibration of the
- 18 model; we have a couple comments about that.
- 19 We had a couple comments about -- similar
- 20 to what we've been talking about, asked them to go
- 21 back and use new information or other data that's
- 22 available when they estimate things like riverbed
- 23 conductance or hydraulic conductivity.
- 24 MELISSA KONECKY: But some of these
- 25 concerns from 2004 are still different from the

1 concerns of the 2005 update, and we were under the

- 2 impression that the purpose of this meeting was to
- 3 go through each one of them separately --
- 4 JASON LEIBBERT: Well --
- 5 MELISSA KONECKY: -- as opposed to lumping
- 6 these two together.
- 7 LYNN MOORER: Mr. Leibbert, that's the
- 8 whole point of this meeting is to be able to talk
- 9 about this in detail, comprehensively. We'd like to
- 10 go --
- 11 GARTH ANDERSON: Well, your original --
- 12 this is Garth Anderson.
- 13 Your original letter did just request it
- 14 to offer our opinion of the MUD model.
- 15 LYNN MOORER: Yeah, we want your view --
- 16 we wanted your view of the 2004 model --
- 17 GARTH ANDERSON: Which you will get.
- 18 LYNN MOORER: -- and each of the comments
- 19 for the 2005 model.
- 20 GARTH ANDERSON: We're not going to walk
- 21 through comment by comment. We're going to talk in
- 22 general the results of our review from the 2004
- 23 as -- and as it leads into 2005.
- 24 LYNN MOORER: Why not? We -- that's the
- 25 purpose of this special meeting, to be able focus --

- 1 you have been giving us basically the bum's rush
- 2 every time we ask for detailed questions at regular
- 3 RAB meetings saying we don't have time, we're not
- 4 prepared.
- 5 That was the main point of this meeting,
- 6 we could finally get some detailed answers to
- 7 questions that have been outstanding for a long
- 8 time.
- 9 GARTH ANDERSON: We're prepared to answer
- 10 your specific questions; we just did not intend to
- 11 walk through comment by comment the reviews of
- 12 2004 and 2005 models.
- 13 LYNN MOORER: Well, that's a specific
- 14 question we're asking you. It doesn't take a long
- 15 time if you say, okay, we pointed this out, and this
- is the concern and this is why, we pointed this out,
- 17 this is a concern and this is why; just -- if you
- 18 just go ahead and roll with it I think we could get
- 19 that covered without a lot of problems here.
- JASON LEIBBERT: Well, they're all right
- 21 here. We asked them to evaluate pumping rates
- 22 higher than the average permitted rate because we
- 23 were interested in seeing the effects of higher
- 24 pumping rates to see if that would a negative effect
- on the Mead plume.

1 We asked them to do a better calibration

- 2 of the model because there was some questions about
- 3 how they did that the first time around, and it has
- 4 to do with the transmissivity and the sensitivity
- 5 analysis. This is all spelled out in the comments.
- 6 LYNN MOORER: That's what we want you to
- 7 talk about, Mr. Leibbert.
- 8 JASON LEIBBERT: I can read them to you.
- 9 Would you like me to read them?
- 10 LYNN MOORER: Not everybody has all this
- 11 stuff, that's the point of it. We want everybody to
- 12 hear.
- JASON LEIBBERT: But if you have them then
- 14 everyone should have them.
- 15 LYNN MOORER: That is not fair nor is it
- 16 correct, Mr. Leibbert, you know that. This is a
- 17 public meeting, you're to provide information to
- 18 everybody who attends.
- 19 MELISSA KONECKY: Not everybody here can
- 20 open an attachment, not everyone here is internet
- 21 connected. You know, I'll forward all this stuff to
- 22 these folks and they can't always open them, they
- 23 can't always print them. I mean, some of them
- 24 aren't even online.
- 25 GARTH ANDERSON: If I recall from one of

1 your request letters that you said that no need to

- 2 provide the information from MUD because you already
- 3 had those comments and responses available.
- 4 LYNN MOORER: That's not true, we --
- 5 GARTH ANDERSON: Would you care to
- 6 clarify, please?
- 7 LYNN MOORER: To clarify, we asked you
- 8 specifically to provide copies, hard copies for
- 9 people to look at for this meeting as handouts that
- 10 would supplement the oral or the verbal presentation
- 11 that you would make.
- 12 And we said because the MUD model was
- 13 online, both of them are online, and they contain
- 14 your written comments from last year, there was no
- 15 need to provide that to us again as a handout prior
- 16 to the meeting.
- 17 But that in no way gave you permission to
- 18 not talk about this stuff in detail now at this
- 19 meeting.
- 20 GARTH ANDERSON: We're prepared to talk in
- 21 detail.
- 22 LYNN MOORER: All right. Go for it.
- 23 GARTH ANDERSON: Thank you. And bear with
- 24 us as we read through the comments and responses,
- 25 and also keep in mind that there are no responses

- 1 from MUD on the review of the 2005 model yet.
- 2 LYNN MOORER: Okay. They had -- they had
- 3 mentioned that mid March they would have them, so
- 4 they don't have them yet, right?
- 5 JASON LEIBBERT: I don't believe they've
- 6 published anything yet. Well, I'll just say it one
- 7 more time because it's a true statement, I think,
- 8 somebody correct me if I'm wrong, the MUD web site
- 9 has all the comments from the Corps, all the
- 10 comments from EPA, all the comments from public
- 11 reviewers, and they also have all their responses
- 12 to -- those aren't on the web site?
- 13 LYNN MOORER: Only with respect to the
- 14 2004 model, Mr. Leibbert.
- JASON LEIBBERT: Well --
- 16 LYNN MOORER: That's not up there for the
- 17 2005 model, but again, Ms. Konecky said, not
- 18 everybody has access to a computer or likes to use a
- 19 computer or likes to use the internet, okay.
- 20 That's one of the reasons why we asked for
- 21 this special meeting, so please, would you just get
- 22 on with it. We would appreciate -- explain to us --
- 23 you can just move quickly, this is our comment on
- 24 the 2004 model, 1, 2, 3, 4, 5; this is what they did
- 25 to respond to it, we found this acceptable, we

1 didn't; and this is what changed in 2005, whatever

- 2 they are.
- We'd like to know what your thoughts are
- 4 and explain to us what -- why you had concerns in
- 5 2004, and the ones that were addressed and the ones
- 6 that weren't adequately to your satisfaction.
- We've asked you these questions at
- 8 previous RAB meetings, you may recall in
- 9 February 2005, Mr. Leibbert.
- JASON LEIBBERT: I remember, and that's --
- 11 LYNN MOORER: All right. So now is your
- 12 opportunity to fill us in in detail.
- JASON LEIBBERT: That's what these slides
- 14 speak to. These are the comments that we gave to
- 15 MUD, this and the next page, and we can talk about
- 16 those.
- 17 LYNN MOORER: There are seven pages here.
- JASON LEIBBERT: Seven pages of what?
- 19 LYNN MOORER: Your documents covered seven
- 20 pages for the 2004 model.
- JASON LEIBBERT: And they're --
- 22 LYNN MOORER: That's a lot from what
- 23 you've got here.
- JASON LEIBBERT: They're summarized right
- 25 here.

```
1 Comment No. 1, this report includes
```

- 2 discussion of two different modeling scenarios: A
- 3 steady state scenario that utilizes a total Platte
- 4 west well field pumping rate of approximately
- 5 52 million gallons per day, and a transient scenario
- 6 that utilizes a variable pump rate that ranges from
- 7 40 to 75 million gallons per day over the course of
- 8 one year.
- 9 While these two scenarios are reasonable,
- 10 NWK, Kansas City District, expects that these
- 11 scenarios will not be satisfactory to the contingent
- 12 of public and regulatory reviewers.
- 13 Kansas City District has received numerous
- 14 comments from the public EPA and NDEQ asking for
- 15 more modeling to address questions such as what if
- 16 MUD pumps 75 million gallons per day, does that
- impact the NOP plume; how long can pumping
- 18 operations continue at rates higher than 52 million
- 19 gallons per day before there's an impact on the NOP
- 20 plume; what about 104 million gallons per day.
- 21 Kansas City District requests that this
- 22 report be revised to include additional pumping
- 23 scenarios to address the question of at what point
- 24 does the pumping impact the NOP plume.
- 25 MIKE RYAN: I have question after you

- 1 address the first comment.
- JASON LEIBBERT: So that's the first
- 3 comment here, evaluate average pumping rates higher
- 4 than the permanent rate, that's what we asked them
- 5 to do our in our Comment No. 1; and their response
- 6 was that they would do simulations at higher pumping
- 7 rates, which is what's in the Phase 2 report.
- 8 LYNN MOORER: Are you satisfied then with
- 9 what they did in the -- in the 2005 model on that
- 10 issue?
- 11 JASON LEIBBERT: We've provided comments
- 12 to them on the '05 model, and we have no further
- 13 comment on this question.
- 14 MIKE RYAN: We have a question over here.
- 15 LYNN MOORER: So the question is are you
- 16 satisfied, yes or no?
- JASON LEIBBERT: Yes, we're satisfied.
- 18 LYNN MOORER: All right. That's what we
- 19 wanted to know.
- 20 LORUS LUETKENHAUS: When they're permitted
- 21 to pump 104 million gallons a day why would you even
- 22 consider letting them only give you information for
- 23 a water model that's 70 million gallons a day?
- JASON LEIBBERT: Well, we need to be more
- 25 specific. They're not allowed to pump at

1 104 million gallons per day uncontrolled. There's

- 2 an annual average rate of 52 million gallons per
- 3 day, that that's what the permit is meant to
- 4 enforce.
- 5 And the model -- the '05 -- the '04 and
- 6 '05 modeling report did look at pumping rates higher
- 7 than the 52 MGD permitted rate.
- 8 LORUS LUETKENHAUS: I think if you read
- 9 the 404 permit it says they can pump at 104 gallons
- 10 a day.
- Now, you're right, the average pumping
- 12 rate will be 52 million gallons a day to fulfill
- 13 their maximum pumping, but they can pump at
- 14 104 million gallons a day for however many days they
- 15 want to pump.
- JASON LEIBBERT: As long as they --
- 17 LORUS LUETKENHAUS: They don't exceed the
- 18 maximum pumping --
- 19 JASON LEIBBERT: -- the annual average,
- 20 right.
- 21 LORUS LUETKENHAUS: Yes.
- JASON LEIBBERT: And that's -- well, I'm
- 23 treading into the area of trying to explain the MUD
- 24 model, which is really not my role. You know, we
- 25 didn't make the MUD model.

```
1 If there's questions about the MUD model,
```

- 2 those questions really should be directed to MUD
- 3 about what they did in their model.
- 4 But this is a pretty easy one, I can tell
- 5 you that everybody knows that during the summer
- 6 they're going to have to pump more than 52 MGD to
- 7 fulfill the demands, and then during the off-peek
- 8 seasons, during the wintertime, they'll have to pump
- 9 less than 52 MGD so that by the end of the year
- 10 their annual average is only 52 MGD.
- 11 GARTH ANDERSON: Okay. Let's go on.
- 12 JASON LEIBBERT: So the second comment
- 13 from us, from Kansas City District, on the
- 14 2004 model was -- has to do with calibration and
- 15 aquifer transmissivity, hydraulic conductivities,
- 16 sensitivity analysis; it's very similar to what we
- 17 talked about in regards to the DEQ comments on our
- 18 RDGM model.
- 19 The '04 model had -- they -- they did
- 20 their calibration process, they did their
- 21 sensitivity analysis; we had some questions about
- 22 that, specifically aquifer transmissivity and how
- 23 that parameter was varied during the sensitivity
- 24 analysis.
- 25 And we basically agreed with their

- 1 response. They did some additional work and
- 2 provided some additional justification that last
- 3 year we were basically satisfied with.
- 4 Comment No. 3 from us to MUD on the
- 5 2004 model was the 2004 model wasn't using the most
- 6 current operational data from our extraction wells
- 7 from the City of Lincoln wells, and we asked them to
- 8 correct that, and they provided some additional
- 9 information.
- 10 We gave them our actual operating rates
- 11 from our extraction wells so that they could use
- 12 those, and I think the only question that still
- 13 remains on that is how they're modeling the City of
- 14 Lincoln well fields I think.
- 15 You guys had that in your comments again
- on the 2005. The City of Lincoln talks about
- 17 expanding their well fields, how does MUD's model
- 18 account for that future expansion.
- 19 So that's one area of the model where they
- 20 still need some work; we basically shared that same
- 21 comment with you guys on that.
- 22 LYNN MOORER: Mr. Leibbert, just if --
- 23 it's possible that people are not clearly just to
- 24 say they need some more work on it; is it not
- 25 accurate to say that for the second year in a row

1 MUD did not use actual pumping rates for the City of

- 2 Lincoln?
- 3 They did not use accurate pumping rates
- 4 for the City of Lincoln in this second model; that
- 5 is their 2005 model, so much of the same -- many of
- 6 the same deficiencies were repeated in the second
- 7 model with respect to the City of Lincoln pumping
- 8 rates.
- 9 JASON LEIBBERT: With respect to the City
- 10 of Lincoln pumping rates, what they have in the
- 11 model probably needs to be corrected.
- 12 LYNN MOORER: (Inaudible comment.)
- 13 SCOTT MARQUESS: I'll answer it.
- I believe on -- we had a similar comment.
- I think the issue in the second model was
- 16 that it wasn't the current use, it was a projected
- 17 future use, which is reported on Lincoln's web site.
- 18 The City of Lincoln has a web site that
- 19 has some master planning, and so I'd like -- our
- 20 comment was to the effect that you need to consider
- 21 the projected future water use, needs, whatever of
- 22 the City of Lincoln as outlined in their master
- 23 plan, which I don't think they did in the second
- 24 model. Does that --
- JASON LEIBBERT: (Nods head.)

1 LYNN MOORER: The report comments are

- 2 different than that.
- 3 COURT REPORTER: I'm sorry, what did you
- 4 say?
- 5 GARTH ANDERSON: Thanks.
- 6 LORUS LUETKENHAUS: Lorus Luetkenhaus
- 7 again.
- 8 On MUD's second model did they use any
- 9 information from the 1997, information that they
- 10 used for the first model, did that make sense?
- 11 Did they use any of the same information
- 12 on this second model that they used on the first
- 13 model?
- JASON LEIBBERT: I'm still not tracking
- 15 with you, data with --
- 16 LORUS LUETKENHAUS: Well, one would be the
- 17 Lincoln water system, of their usage. I mean, they
- 18 estimated it for the first model; did they estimate
- 19 for the second model?
- JASON LEIBBERT: Well, I think it's
- 21 similar to Lynn's question is are they using actual
- 22 pumping rates from the City of Lincoln.
- LORUS LUETKENHAUS: Right.
- JASON LEIBBERT: And I think the answer is
- 25 no, they're probably not using actual pumping rates;

- 1 they're using something else that they've got from
- 2 another source, which was kind of their future
- 3 expansion. That's something that can be changed the
- 4 next time they do the modeling.
- 5 LORUS LUETKENHAUS: Okay. Now I've got a
- 6 second question.
- 7 On the 404 permit, No. 60C, permittee --
- 8 solely at permittee cost will provide a base line
- 9 transient groundwater model using the most current
- 10 data available.
- 11 So they did not do that, correct, just by
- 12 what you said?
- JASON LEIBBERT: Go on.
- 14 LORUS LUETKENHAUS: So they're in
- 15 violation -- technically they're in violation of the
- 16 404 permit?
- 17 GARTH ANDERSON: Okay. We're not prepared
- 18 to talk about specifics of the permit tonight. I
- 19 will refer you to the MUD web site, which posts its
- 20 current permit status, and that's been vetted by the
- 21 Corps of Engineers, the permit conditions and the
- 22 status.
- 23 So the only -- the bottom line is on the
- 24 permit that us and Omaha are in concert with is that
- 25 the -- that MUD will be in full compliance with the

- 1 permit before they begin operations.
- 2 It's not a, you know, in violation at a
- 3 particular time, but by the time they are ready for
- 4 full scale operations they'll be in compliance with
- 5 the permit.
- 6 That's all I'm going to say about
- 7 specifics of the permit tonight.
- 8 LYNN MOORER: Just a -- I appreciate your
- 9 explanation, Mr. Anderson. Would you explain what
- 10 you mean by vetted? Was this -- the status list
- 11 composed by MUD and then Omaha District signed off
- 12 on it or was it an Omaha District generated project?
- 13 GARTH ANDERSON: The status is written by
- 14 the MUD and it's reviewed by Omaha District before
- 15 it's posted on the MUD web site.
- 16 LYNN MOORER: So that's critical to know
- 17 it's an MUD document.
- 18 GARTH ANDERSON: Which is reviewed and
- 19 blessed by the Omaha District before it's posted on
- 20 the web site.
- 21 LYNN MOORER: Thank you.
- 22 JASON LEIBBERT: The fourth comment that
- 23 we gave to MUD on the 2004 model had to do with the
- 24 single layer nature of the MUD model and the ability
- of the model to simulate groundwater flow under

- 1 Johnson Creek.
- 2 And the way this was evaluated and redone
- 3 in the 2005 model was for them to place particles in
- 4 the vertical direction, and then subsequently show,
- 5 you know -- the document shows that those particles
- 6 are capable of moving under Johnson Creek and other
- 7 creeks in the area, and that those creeks only
- 8 partially prevent groundwater flow from one
- 9 direction to another. So we're basically satisfied
- 10 with that.
- 11 The fifth comment that we gave to MUD on
- 12 the --
- 13 LYNN MOORER: I'm sorry, I just didn't
- 14 hear the end of what you said. You said you're
- 15 basically satisfied with what MUD said in their
- 16 2005 model regarding Johnson Creek and the flow?
- JASON LEIBBERT: Regarding the ability of
- 18 the model to simulate vertical flow directions, yes,
- 19 we're satisfied with that.
- The fifth comment we gave to MUD on the
- 21 2004 report has to do with the value assigned to
- 22 storativity for different areas within the
- 23 model.
- 24 And the resolution on that was that they
- 25 would use values for storativity that were

1 consistent with the Platte valley, and that we're

- 2 basically satisfied with that as well.
- 3 The sixth comment that we gave to MUD on
- 4 the 2004 report has to do with the recharge rate,
- 5 which means how much precipitation happens during
- 6 the course of a year and how much of that rain water
- 7 actually percolates down into the ground versus how
- 8 much leaves the site on -- in a creek or in a river,
- 9 how much of that water evaporates out.
- 10 And we had a question about how they
- 11 estimated that recharge, and they provided an
- 12 explanation that we were basically satisfied with.
- 13 LYNN MOORER: Excuse me, Lynn Moorer.
- 14 Mr. Leibbert, do you have a document that
- 15 shows the resolution of each of these? Mr. McCollum
- 16 mentioned to us at the February 2005 meeting
- 17 normally when we resolve comments there's some
- 18 statement as to what the resolution is.
- 19 So is there some document that is -- that
- 20 we could look or that you could provide us that
- 21 shows what the resolution of all of your comments
- 22 were on the 2004 model?
- JASON LEIBBERT: I'm reading from the
- 24 responses that MUD wrote to all these comments, and
- 25 then giving the Kansas City position on those.

```
1 LYNN MOORER: So you're looking at MUD's
```

- 2 version of it to say that's the resolution of the
- 3 Kansas City Corps' comments?
- 4 JASON LEIBBERT: No, that's not what I
- 5 said.
- 6 LYNN MOORER: What -- so it's an MUD
- 7 document you're looking at, correct?
- 8 JASON LEIBBERT: MUD provided a written
- 9 response to every comment that we gave them, and
- 10 that's what I'm reading to you right now.
- 11 LYNN MOORER: And so that's what you
- 12 consider to be the document that records what the
- 13 resolution of all those issues were?
- JASON LEIBBERT: It records the response
- 15 to all of our comments.
- 16 LYNN MOORER: All you need to do is answer
- 17 yes or no. I'm asking: That's the document you
- 18 regard as being the --
- 19 JASON LEIBBERT: This is a document that I
- 20 regard as being --
- 21 LYNN MOORER: -- that memorializes the
- 22 resolution?
- JASON LEIBBERT: Memorializes the
- 24 responsive comments, yes.
- 25 LYNN MOORER: The question is: But

1 memorializes the resolution of the comments that the

- 2 Kansas City Corps had on the 2004 model?
- 3 This is an MUD document; are you basically
- 4 adopting this MUD document as your own and saying,
- 5 yes, this is our document that memorializes the
- 6 resolution of all of our issues with them?
- 7 JASON LEIBBERT: No, I'm not adopting this
- 8 document at all. I'm reading to you what -- how MUD
- 9 responded to all of our comments, and then I'm
- 10 giving you the Kansas City District's response, so
- 11 our resolution or acceptance or opinion, if you
- 12 will; that's what you asked for, isn't it?
- 13 LYNN MOORER: My basic question was: Is
- 14 there a Kansas City Corps document that memorializes
- 15 what the resolution is, as Mr. McCollum says you
- 16 normally do whenever you have resolution of
- 17 comments?
- JASON LEIBBERT: No, there's nothing --
- 19 there is no memorializing document the way you're
- 20 describing it, no.
- I have all the responses that MUD wrote
- 22 and I have all the comments that we gave them on the
- 23 2005 model, and pretty soon we'll have responses to
- 24 those comments as well.
- 25 And you asked for the Kansas City opinion

on those responses, and that's what we're talking

- 2 about here, this is what I'm reading to you.
- 3 MIKE RYAN: I'm going to go back to Lorus'
- 4 question, which I don't think you really answered in
- 5 a very clear way.
- 6 You were talking about you're only
- 7 requiring MUD to work their model assuming a
- 8 70 million-gallon a day pumping rate; is that
- 9 correct?
- JASON LEIBBERT: No, not exactly. We're
- 11 not requiring them to do 70 or 75 or 72 or 83;
- 12 there's no requirement like that, no.
- 13 MIKE RYAN: You're suggesting it?
- JASON LEIBBERT: Well, we asked them to
- 15 evaluate what would happen in this -- what would
- 16 happen to this site, what would happen to this
- 17 project, what would happen if you did pumping rates
- 18 higher than 52 million gallons per day for longer
- 19 than just a couple months out of the year, because
- 20 we know they're going to go above 52 MGDs at certain
- 21 points of the year.
- 22 So what if, it's kind of a pretend
- 23 question, it's something --
- 24 MIKE RYAN: Well, it's really not pretend
- 25 because you know they're going to do 104 at some

- 1 time probably.
- JASON LEIBBERT: We don't know that.
- 3 MIKE RYAN: Oh, I think eventually they
- 4 will. They wouldn't spend the money for those kinds
- of pumps if they weren't going to use them.
- 6 JASON LEIBBERT: We asked them to do some
- 7 of these what-if scenarios, and they did that in the
- 8 2005 version of the model.
- 9 MIKE RYAN: And how high did it go?
- JASON LEIBBERT: They went up to 104.
- 11 MIKE RYAN: They did use 104?
- 12 JASON LEIBBERT: And I think it was 5 MGD
- 13 increments; they started at 52 and I think they went
- 14 5 and then 5 more, so probably 57, 62, 67. I think
- 15 they did it in 5 to try to demonstrate or try to
- 16 illustrate rather what would happen at all those
- 17 different steps, at 57, at 62, at 67, and their
- 18 conclusions are in those -- in their report.
- I mean, that's -- I think that's a fair
- 20 characterization of what they did in their report.
- 21 MIKE RYAN: Okay. Thank you.
- 22 SCOTT MARQUESS: I'm not sure if they did
- 5 MGD increments, but they went to 104.
- 24 HAROLD KOLB: For how long?
- 25 SCOTT MARQUESS: MUD's model has 104 MGD

1 scenario under steady state, and they did what they

- 2 called particle tracking, where they placed a
- 3 particle east of where the plume boundary was
- 4 alleged to be, and saw that how that behaved.
- I don't have a problem with their
- 6 depiction of the plume boundary, and what they did
- 7 was I think the particle tracking was -- the
- 8 particle started at a half mile east of the plume.
- 9 NEW SPEAKER: (Inaudible comment.)
- 10 SCOTT MARQUESS: I believe that's correct.
- 11 JASON LEIBBERT: The seventh comment that
- 12 we gave to MUD back in 2004 has to do with the way
- 13 the agricultural grain tiles were simulated in the
- 14 model, and they provided more information.
- 15 They did -- they did some field surveys to
- 16 try to verify where drain tiles actually exist, and
- 17 we were basically satisfied with that response.
- 18 LYNN MOORER: They tried to?
- 19 JASON LEIBBERT: Well, they did do field
- 20 surveys and they did gather actual information,
- 21 actual locations about where the drain tiles are,
- 22 and they changed the way they simulated them in the
- 23 model.
- 24 The eighth comment that we gave them back
- 25 in 2004 had to do with the transient simulation

- 1 versus the steady state simulations, and we asked
- 2 them to run a transient simulation that was longer
- 3 than two years in duration, and to illustrate that
- 4 the conclusions from the transient simulations were
- 5 consistent with the conclusions from this steady
- 6 state simulation.
- 7 And they basically did that. They did
- 8 transient simulations that were a little bit longer
- 9 than two years, and demonstrated that there's no
- 10 significant differences between the conclusions,
- 11 that the transient results and the steady state
- 12 results are essentially the same, so we were
- 13 satisfied with that.
- 14 The ninth comment that we gave them --
- 15 LYNN MOORER: Excuse me.
- JASON LEIBBERT: -- has to do with
- 17 irrigation wells.
- 18 LYNN MOORER: Mr. Leibbert, on that
- 19 comment though you also had in there in 2004 the --
- 20 your view that there are many residential water
- 21 supply wells and irrigation wells located east of
- 22 the plume boundary, and the model must be able to
- 23 demonstrate these wells are not -- will not be
- 24 impacted, and as a result of the well field --
- 25 Platte west well field pumping.

```
1 In the 2005 model they didn't include
```

- 2 residential wells yet again, so do you want to
- 3 revise your answer, you were satisfied that -- with
- 4 what they did, because they, again, this time
- 5 around, did not include residential well pumping in
- 6 their model?
- 7 JASON LEIBBERT: Residential well pumping
- 8 in the model is insignificant. It doesn't -- the
- 9 model doesn't need to account for pumping from
- 10 residential wells.
- 11 The -- just to the comment more as to
- 12 illustrate where those residential wells lie, and
- 13 they're not -- there isn't a figure in the report
- 14 that has residential supply wells?
- 15 LYNN MOORER: (Shakes head.)
- JASON LEIBBERT: They do everything except
- 17 that one? Well, we could ask MUD to go back and do
- 18 that again to show where all the residential wells
- 19 are, maybe that's something we can amend our
- 20 comments to.
- NEW SPEAKER: (Inaudible comment.)
- JASON LEIBBERT: Maybe another agency
- 23 might have made that comment as well.
- 24 LYNN MOORER: Well, actually I think that
- 25 your 2005 comments say you basically agree with what

```
1 the center of expertise said and what Harold Kolb's
```

- 2 comments were, that's what your cover letter says --
- 4 LYNN MOORER: -- and that was one of the
- 5 criticisms in Harold Kolb's comments, that you
- 6 didn't include -- they didn't include residential
- 7 wells, so now are you changing your view or --
- 8 JASON LEIBBERT: Well, I'm not changing my
- 9 view.
- 10 LYNN MOORER: -- did you just forget?
- JASON LEIBBERT: I'm not changing my view.
- 12 I guess I didn't remember that Harold made that
- 13 exact comment in his comment letters.
- 14 When we wrote our comments back in
- 15 February we'd seen Harold's comments, we'd seen the
- 16 comments had from the CX at that point. All those
- 17 comments are fair comments; we basically agree that
- 18 MUD should address all of those questions as well.
- 19 LYNN MOORER: Just to clarify because you
- 20 had said just a few minutes ago we were satisfied
- 21 with what they did, and at least with respect to
- 22 residential wells, I want to make sure that's what
- 23 you really meant.
- JASON LEIBBERT: Well, we agree with the
- 25 comments that Harold had in his letters as well.

```
1 GERALD VERDUSKA: I didn't -- did I miss
```

- 2 it or did you say what time -- what month of the
- 3 year was it when those particles were put into the
- 4 ground east of the plume to see what kind of
- 5 movement, if there was any, do you remember what
- 6 time of year it was?
- 7 JASON LEIBBERT: The particle tracking
- 8 isn't --
- 9 SCOTT MARQUESS: Is --
- JASON LEIBBERT: It's not really tied to
- 11 as a specific month or a specific time of the year,
- 12 but the way this simulation works in the model is
- 13 it's kind of a what-if sort of question, a pretend.
- 14 And the scenario is pretend you can see
- 15 one molecule of water, and as that one molecule of
- 16 water moves over time you can -- you can watch it,
- 17 you can see where it goes, every -- every step it
- 18 makes you can see where it goes.
- 19 So the simulations, you know, that MUD did
- 20 with particle tracking is you put a particle up here
- 21 and then you turn the model on and you say, model,
- 22 assume you're going to pump at 52 million gallons a
- 23 day all day every day all year long for the rest of
- 24 time, for infinity; where would that particle go.
- 25 And then the model does its calculations,

1 and it makes its predicted path and it shows where

- 2 that particle goes and it also shows how fast it
- 3 travels.
- 4 So in the 2005 report that MUD did, they
- 5 put particles up here and then they went -- I'm not
- 6 sure if it was exactly one-half mile, but they went
- 7 about a half mile here, and then they did particles
- 8 again, and then they said, you know, if this pumps
- 9 at 52 million gallons a day where does that particle
- 10 go, and then they said if this pumps at some other
- 11 rate higher than 52, and I think they went all the
- 12 way up to 104, where does that particle go.
- 13 And some of the simulations show that the
- 14 particles go this direction or they go and then they
- 15 come back around like this, you know, and it can
- 16 take, you know, 10, 15, 20, 50 years for it to
- 17 travel that way; that's what the particle tracking
- 18 simulations do.
- 19 And I don't have it right in front of me,
- 20 the conclusions were basically that the only time
- 21 they could -- they could make a particle come all
- 22 the way over here was if they pumped at 104 million
- 23 gallons a day all day every day all year long every
- 24 year from now until the cows come home.
- 25 GERALD: It seems like that would be an

1 almost impossible calculation to do unless you knew

- 2 the conductivity with the river.
- 3 JASON LEIBBERT: Well, the riverbed
- 4 conductance, the hydraulic conductivity, the
- 5 storativity, the transmissivity, the
- 6 precipitated, all those things factor into those
- 7 calculations.
- 8 So as long as we're talking about it, this
- 9 is what we talk about when we talk about sensitivity
- 10 analysis for the model, and that basically says we
- 11 tell the model, use this value for hydraulic
- 12 conductivity, use this value for transmissivity, use
- 13 this value for riverbed conductance, and then do the
- 14 calculations and see what you get.
- 15 And then for the sensitivity analysis you
- 16 say, well, what if I leave everything else the same
- 17 but I change this one perimeter, if I change the
- 18 conductivity to something else then what happens, do
- 19 I get the same results, do I get different results,
- 20 do I get drastically different results or do I get
- 21 different results that are only small.
- 22 And that's how you would evaluate how
- 23 sensitive the model is to those kinds of changes.
- 24 The riverbed conductance is definitely an important
- 25 factor. If you make some sort of guess about this

1 factor, and you get a result that says this particle

- 2 goes from here to here in ten years, you know,
- 3 that's -- you know, that would be a very --
- 4 GERALD: But what you're saying is that
- 5 under the worst case scenario the highest
- 6 conductivity the particle didn't move at all when
- 7 you started out east of the plume?
- 8 When you started out at a half mile east
- 9 of the plume in the worst case scenario it didn't
- 10 move at all?
- 11 JASON LEIBBERT: I don't think that's what
- 12 they did exactly.
- 13 GERALD: Okay.
- 14 JASON LEIBBERT: They -- what they did
- 15 when they did their particle track analysis they
- 16 were using the -- the calibrated version of the
- 17 model, which is basically what they think is the
- 18 best version.
- 19 You know, if they think they have a good
- 20 value for the riverbed, they think they have a good
- 21 value for conductivity, they think they have a good
- value for recharge, and they think that's a good
- 23 match because they did the calibration process when
- 24 they showed that the difference in water levels is
- 25 small, that it's within acceptable ranges.

```
1 So starting with that, what they think is
```

- 2 kind of the -- the best version, then they did those
- 3 particle analysis -- those particle tracks, and they
- 4 went all the way up to 104. It's all in the report.
- 5 GERALD: Did they -- in the model did they
- 6 have a figure for an August -- the amount of gallons
- 7 that comes down the valley per day?
- JASON LEIBBERT: A figure for?
- 9 GERALD: Surface water and aquifer
- 10 movement down the valley?
- JASON LEIBBERT: Well, it -- I'm not sure,
- 12 I don't know if they had -- I don't know if they
- 13 gave something specific like that for August of a
- 14 certain year.
- 15 GERALD: That seems like it'd be really
- 16 useful.
- 17 SCOTT MARQUESS: I believe -- I don't
- 18 believe there was a specific to a month, but it's
- 19 got to be -- it's not just a monthly thing. It's
- 20 got to be over some period of time that you'll get
- 21 some representative output from the model I guess;
- 22 would that be an adequate way to describe it?
- So, no, there's not an August. There'd be
- 24 lots of Augusts that we'd have to look at, so we'd
- 25 have to have somewhat of a steady state or even a

- 1 transient over some period of time.
- 2 GERALD: The reason I chose August I
- 3 was -- I think it's prudent to always take the worst
- 4 case scenario.
- 5 SCOTT MARQUESS: Right, they do have some
- 6 high stress conditions that they do model.
- JASON LEIBBERT: Yeah, that's what I
- 8 wanted to say as well. It's a little -- it's a
- 9 little hard to explain, and it's a question really
- 10 better posed to MUD because, you know, they can
- 11 explain what they did better than I can explain what
- 12 they did.
- 13 But to try to account for worst case
- 14 things they used stage data from the river, like the
- 15 lowest point. You know, they -- in some ways they
- 16 tried to account for those worst case scenarios.
- 17 They -- I can't say that they used the
- 18 worst case scenario for every single parameter every
- 19 single time, but there's different points in the
- 20 model where they did account for drought conditions,
- 21 low stage levels in the river, I'm trying to think,
- 22 low precipitation amounts so therefore you get less
- 23 recharge which means more water has to come out of
- 24 the aquifer.
- So I don't think they did something

1 specific the way -- the way you described it, but

- 2 they do account for worst case scenarios in some
- 3 cases, yeah.
- 4 LYNN MOORER: Mr. Leibbert, could I ask of
- 5 Mr. Marquess and Mr. Rendell?
- 6 Wouldn't it make sense for the purposes of
- 7 what everybody wants to know about this area, that
- 8 at least one year, if not maybe a couple years, in a
- 9 row that they calibrate -- MUD calibrates its model
- 10 to August rather than doing it to March or October?
- I mean, in order to address what
- 12 Mr. Verduska is talking about basically, to be to
- 13 able to say this is -- these are the data that we
- 14 have gathered from all of these different places
- 15 that we've checked them on March or checked in them
- 16 in August -- in October and say, here we are for
- 17 August.
- 18 Let's calibrate it to here for now so we
- 19 have a better read on what it's like after a couple
- 20 of months of heavy irrigation pumping.
- 21 SCOTT MARQUESS: Yeah, I'd say that is a
- 22 reasonable suggestion.
- 23 LYNN MOORER: Yes, it is reasonable; could
- 24 you make that suggestion to them, or directive?
- 25 SCOTT MARQUESS: I can't --

```
1 LYNN MOORER: I'm sorry?
```

- 2 SCOTT MARQUESS: I cannot make directives
- 3 to MUD. We make comments, suggestions; we are
- 4 not -- we do not regulate MUD under the permit.
- 5 Can you make that suggestion, yes, we can.
- 6 LYNN MOORER: I would encourage you to
- 7 make that suggestion and lobby hard for it.
- 8 DEBBIE CRANEY: Debbie Craney (phonetic),
- 9 EPA.
- 10 I just have a question. I've been coming
- 11 with Scott to these meetings for about a year and a
- 12 half now, have -- has MUD been invited to these
- 13 meetings and they've refused or why do they not
- 14 come?
- 15 NEW SPEAKER: They don't care.
- DEBBIE CRANEY: Well, they may not care,
- 17 but --
- 18 LYNN MOORER: Who do want to answer that
- 19 question?
- 20 DEBBIE CRANEY: Pardon me?
- 21 LYNN MOORER: Who do you want to answer
- 22 that question?
- DEBBIE CRANEY: The RAB chairs, Scott. I
- 24 don't -- I don't -- it doesn't -- I'd just like to
- 25 know. I mean, everyone's summarizing what MUD would

- 1 do; why -- have they been invited? Just curious.
- 2 SCOTT MARQUESS: MUD was here -- no, MUD
- 3 has never been here. I don't believe MUD has ever
- 4 been at a RAB meeting. The Omaha District was here
- 5 one time and then elected not to attend further.
- 6 NEW SPEAKER: Has MUD been invited?
- 7 SCOTT MARQUESS: MUD -- I don't know that
- 8 MUD would be invited.
- 9 GARTH ANDERSON: I do believe they have
- 10 had some other public forums regarding the model.
- 11 LYNN MOORER: Not really, they have
- 12 ceased --
- 13 GARTH ANDERSON: Well, they either have or
- 14 they haven't. They have had other -- they did have
- 15 a public forum at one time to the best of my
- 16 knowledge.
- 17 LYNN MOORER: One.
- 18 SCOTT MARQUESS: There was -- was it
- 19 January of '05 at the NRD.
- 20 GARTH ANDERSON: MUD had a meeting.
- 21 GARTH ANDERSON: So they have a public
- 22 forum to discuss their operation.
- 23 LYNN MOORER: No.
- 24 GARTH ANDERSON: And as Jason pointed out,
- 25 we're not here to explain MUD. We're here to offer

1 our review comments of the model, and that's where

- 2 we need to get back on track, so --
- 3 LYNN MOORER: The EPA PR lady asked the
- 4 question.
- 5 GARTH ANDERSON: I can't speak on behalf
- 6 of MUD.
- 7 LYNN MOORER: That's why I asked who do
- 8 you want to answer the question.
- 9 GARTH ANDERSON: We would all be
- 10 surmising, so none of us can actually put words into
- 11 MUD's mouth about why.
- 12 First of all, this is a -- you know, this
- 13 is a forum to discuss environmental restoration at
- 14 the Mead Super Fund Site.
- 15 LYNN MOORER: We talked about the models
- 16 tonight. Okay. Let's move on.
- 17 JASON LEIBBERT: The ninth comment we gave
- 18 to MUD back in 2004 had to do with the irrigation
- 19 wells, and they provided a response.
- 20 And the way they did it again in the
- 21 2005 model I think needs some more explanation, so I
- 22 think you guys have that in your comment, I think
- that's probably a pretty good comment.
- 24 LYNN MOORER: For the record,
- 25 Mr. Leibbert, I respectfully remind you that a lot

- of people can't attend these meetings.
- 2 They look to the transcripts to get
- 3 substantive information, so if you could explain a
- 4 little bit more of what the issue is or what is the
- 5 comment, what's the criticism regarding each one of
- 6 these, that would be helpful. It's like you've got
- 7 a record here you need to create. Thank you.
- 8 JASON LEIBBERT: The record exists, but
- 9 we'll do that.
- 10 LYNN MOORER: The point of these --
- JASON LEIBBERT: We gave them a comment
- 12 about how many irrigation wells they had in their
- 13 model, and some of the assumptions and estimates
- 14 they made about how those wells are operated.
- 15 And it's like we talked about a little
- 16 while ago, is nobody is going to know when every
- 17 single one of those irrigation wells turns on or
- 18 turns off.
- No one is ever going to know exactly how
- 20 much pumping each well is going to do, so, you know,
- 21 you kind of have to use the best information
- 22 available.
- 23 The state registered well database has
- 24 some of that information, but not all of it; the
- 25 university can provide some of that information, but

- 1 not all of it.
- 2 There's -- I don't know if there's other
- 3 sources or not, but there's -- there may be ways to
- 4 get that kind of information, and probably none of
- 5 them are going to be a hundred percent perfect.
- 6 So the way that MUD went about it in
- 7 2004 was okay, but not great --
- 8 LYNN MOORER: What --
- 9 JASON LEIBBERT: -- that's what we
- 10 commented on, and then the way they went about that
- in 2005 was better but maybe still didn't answer the
- 12 mail on everything, and that's why I think that
- 13 comment is still on the table.
- 14 Anything more to add? You're shaking your
- 15 head, you want to say something?
- 16 LYNN MOORER: If you could just summarize
- 17 what they did and why that was inadequate.
- 18 I mean, they used less than half of the
- 19 registered irrigation wells within Douglas, Sarpy
- 20 and Saunders County that are registered with DNR,
- 21 they used only about 550 irrigation wells even
- 22 though they had said we will use all of the
- 23 registered irrigation wells for 2005; that's one of
- 24 the problems, is that not true?
- JASON LEIBBERT: Well, if you say so. I

- 1 mean, they used half the wells, they used this
- 2 number of wells, they used that number of wells; I
- 3 mean, you know the facts, you know, you tell us.
- I think the comment that you guys made in
- 5 your letter is a good comment, and you pointed out
- 6 some of these inconsistencies, and it's not really
- 7 clear how many wells are in Sarpy County versus how
- 8 many are in Saunders County and how many wells are
- 9 active in the model and how many wells are not
- 10 active in the model, that they need to do a better
- job of explaining that, and that's why I think you
- 12 made that comment.
- So, you know, it's incumbent on them to
- 14 provide the response to that. It's not incumbent on
- 15 me to speculate how MUD may or may not respond to
- 16 that comment.
- 17 LYNN MOORER: Just to clarify,
- 18 Mr. Leibbert, I'm not asking you to speculate. All
- 19 I'm asking is that, if you can, to make this as
- 20 useful for the record, what the nature -- what they
- 21 did and how the Kansas City Corps' view is
- 22 inadequate and that's it.
- JASON LEIBBERT: Well, in --
- 24 LYNN MOORER: This is what they did, this
- 25 is what we think is wrong about it.

1 JASON LEIBBERT: In the 2004 version of

- 2 the model they did not do a very good job of
- 3 simulating the irrigation wells, and we asked them
- 4 to do something different, do something better, and
- 5 we'll wait see and how they respond, if they got
- 6 that same comment again.
- 7 LARRY ANGLE: Larry Angle, North Platte
- 8 North NRD.
- 9 This really isn't a question, it's more of
- 10 a comment on taking groundwater levels in August.
- 11 We currently have -- essentially between
- 12 MUD and ourselves, we have currently ten monitoring
- 13 wells that are monitored continuously.
- We do ours every hour, their data loggers
- 15 are set at least once a day. We're going to be
- 16 installing five more, and those also will be
- 17 monitored on an hourly base.
- 18 So from that 15 you'll have August
- 19 records, you'll have July records, you'll have every
- 20 hour of the year.
- 21 JASON LEIBBERT: The tenth comment that we
- 22 gave to MUD back in 2004 had to do with the bedrock
- 23 elevations that were used in the model, and we asked
- 24 them to use more information regarding that.
- We think maybe they weren't using all the

1 information that was available, and they responded

- 2 to that and changed that, and we were satisfied with
- 3 that.
- 4 The eleventh comment that we gave them has
- 5 to do with the drain boundary, which is basically
- 6 like we've talked about with Johnson Creek and the
- 7 other streams and creeks in the model area.
- 8 It wasn't explained very well in the
- 9 2004 report, so they -- they responded to that with
- 10 a better explanation, and we were satisfied with
- 11 that.
- The twelfth comment that we gave them has
- 13 to do with transmissivity and using the -- well,
- 14 it's an old document, it's by Sutter, and it's a
- 15 commonly referenced document, that everyone that
- 16 works in this area uses this reference.
- 17 And the question was what values of
- 18 conductivity and saturated thickness were applied to
- 19 the cells in the model domain, and MUD provided a
- 20 response, and I think in the 2005 version of the
- 21 report they addressed the transmissivity better.
- The thirteenth comment, we noticed a
- 23 difference between the model potentiometric
- 24 surface versus the 1995 potential metric surface
- 25 that was published by the Nebraska Conservation &

- 1 Survey Division.
- 2 And MUD was using that in reference to
- 3 their calibration, and we didn't think that was a
- 4 very good calibration target, and the explanation
- 5 basically was that they weren't really using that as
- 6 a calibration target; it was just something to
- 7 compare against, and that explanation was
- 8 satisfactory.
- 9 The fourteenth comment that we gave them,
- 10 we asked them to better explain the staging data
- 11 that they were using for the Platte River.
- There's a number of gauging stations on
- 13 the river that provide information about water
- 14 levels during different parts of the year.
- 15 And their response was that they would
- 16 expand the discussion of that and include all that
- 17 gauging data, which is what they did, and we're
- 18 satisfied with that.
- 19 The fifteenth comment that we gave them
- 20 has to do with the way the water levels were
- 21 simulated in the transient level, and the -- when
- 22 you do a transient simulation you divide it up into
- 23 different stress periods.
- 24 And the way the information was being
- 25 passed from one stress period to the next was not

1 well explained, and they provided an explanation of

- 2 that that was satisfactory.
- 3 The sixteenth comment that we gave them we
- 4 asked for drawdown maps at the end of each stress
- 5 period, and they agreed to do that, and we were
- 6 satisfied with that response.
- 7 LYNN MOORER: So they did that?
- 8 JASON LEIBBERT: I think there's drawdown
- 9 maps in the '05 report, isn't there? Do they have
- 10 drawdown --
- 11 SCOTT MARQUESS: Yes, they do.
- JASON LEIBBERT: Yes, they do.
- 13 LYNN MOORER: The irrigation wells, I
- 14 mean, that's a major shall we say problem that
- 15 remains.
- JASON LEIBBERT: Well, we talked about the
- 17 irrigation wells, that's still on the table. They
- 18 still have more work to do in regards to explaining
- 19 the irrigation wells.
- 20 LYNN MOORER: It would seem to just follow
- 21 that if there were major problems with the
- 22 irrigation wells and the assumptions they're using
- 23 then the maps depicting that might also still have
- 24 some problems associated or incompletenesses.
- JASON LEIBBERT: Well, if they make

1 changes that would result in different drawdowns I

- 2 would expect they would produce new drawdown maps.
- No. 17, this had to do with the way the
- 4 transient simulations were performed and kind of
- 5 what was -- what was the starting point for the
- 6 transient simulations, and then kind of building on
- 7 a previous comment about doing a transient
- 8 simulation that was longer than two years in
- 9 duration.
- 10 And they responded to that. They did
- 11 transient simulations that were longer and were able
- 12 to illustrate that the conclusions from the
- 13 transient simulations were really consistent with
- 14 the steady state.
- 15 So that's all that Kansas City District
- 16 comments on the 2004 version of the model, and let
- me get the 2005 model comments, they're much
- 18 shorter.
- 19 So we got the 2005 version of MUD's model
- 20 last fall, and in February, when we wrote them some
- 21 comments about that, again as we talked about, we
- 22 had already seen Harold's comments and we'd already
- 23 seen the comments from the other Corps office in
- 24 Omaha, the CX.
- 25 And the first comment that we gave them

1 about the '05 model was that we asked them to have

- 2 their own public meeting to explain their model, and
- 3 that MUD hasn't yet respond to all of these, so I'm
- 4 not sure how they're going to answer that question.
- 5 GARTH ANDERSON: Just want to make sure
- 6 that -- well, at I guess 10:24 the community
- 7 co-chair had to leave early or leave before the
- 8 completion of the meeting, so it wouldn't
- 9 necessarily be reflected in the transcript. Thanks.
- 10 LYNN MOORER: And why did you want to put
- 11 that in the transcript, Mr. Anderson?
- 12 GARTH ANDERSON: Because I think it would
- 13 be important to note that if any -- any discussions
- 14 happened at this point that there are no RAB members
- 15 present to be part of the discussions.
- JASON LEIBBERT: So the second comment
- 17 that we gave them about the '05 report was to use
- 18 the updated plume boundary maps, and in one of the
- 19 figures they used an updated map and then in some of
- 20 the other figures they still had the old stuff from
- 21 1997, so we asked them to correct that.
- The third comment we gave them on the
- 23 2005 report, the explanation of other municipal
- 24 supply wells like Ashland or Memphis; that wasn't
- 25 explained very well so we asked them to better

1 explain how those municipal wells are accounted for

- 2 in the model.
- 3 The fourth comment we gave them on the
- 4 2005 model again has to do with the irrigation wells
- 5 and how those are included in the model.
- And then the fifth comment that we gave
- 7 them this year was about the City of Lincoln and
- 8 their future expansion of the ability of the model
- 9 to account for those higher pumping rates in the
- 10 future if Lincoln goes through with those expansions
- 11 the way they've described.
- 12 So that's all we have on the '05 model in
- 13 addition to the stuff that you've given them, and
- 14 since then EPA has given them comments, and those
- 15 are all good comments as well.
- 16 GERALD:: Just one more question.
- 17 I was curious whether the model takes into
- 18 account that Western Sarpy dike on the other side of
- 19 the river, because I think -- I think they probably
- 20 should if it doesn't because I think most
- 21 hydrologists would agree that because the river is
- 22 going to be confined and narrower and the velocity
- 23 is going to increase and very likely the river will
- 24 degrade deeper into the ground which could possibly
- 25 impact the conductivities severely if it's a lower

- 1 elevation from now on.
- 2 JASON LEIBBERT: Do you know where that is
- 3 in relation to?
- 4 GERALD: Just on the other side of
- 5 the Platte from the well fields, and then going to
- 6 the south.
- 7 JASON LEIBBERT: To the south?
- 8 GERALD: Yeah.
- 9 JASON LEIBBERT: Yeah, well that's a --
- 10 you know, the geometry or the way you described it,
- if the river is confined it's going to react
- 12 differently, that's -- I can't say for certainty if
- 13 that is or isn't in the 2005 MUD model.
- 14 GERALD: You know, with the -- since
- 15 the Missouri has been channelized, it's degrading
- 16 into the ground, and the Platte is degrading to
- 17 match it, but it'll degrade faster with the velocity
- 18 being increased during higher storm water flows.
- JASON LEIBBERT: Well, that's a -- no,
- 20 that's an interesting comment. I'm not sure how
- 21 they -- in the model they can describe how wide the
- 22 river is, how deep the river is, but I'm not sure --
- 23 you know, I can't say what they did at any one
- 24 particular point, but that's a good question, we'll
- 25 have to look into that one.

1 HAROLD KOLB: I've got several questions

- 2 here. Name is Harold Kolb. Is this time for
- 3 questions?
- 4 JASON LEIBBERT: Yes.
- 5 HAROLD KOLB: Okay.
- GARTH ANDERSON: I think that started a
- 7 long time ago.
- NEW SPEAKER: Yeah, about four hours ago.
- 9 HAROLD KOLB: Well, a couple of hours ago
- 10 you made the comment that the reviewers said that
- 11 all the -- these remarks were adequate on the -- I
- 12 don't remember exactly the comments, I think
- 13 Mr. McCollum made those, that they were adequate,
- 14 that all these inputs were adequate or whatever.
- But it seems to me that they didn't use
- 16 any of the latest data on that stuff. They didn't
- 17 have the number of wells, they didn't have the
- 18 Lincoln well fields, they don't even have the soil
- 19 types, yet they say all this stuff is adequate;
- 20 how -- it's adequate using inadequate data so it's
- 21 totally worthless.
- 22 And when it comes to the number of
- 23 wells--I wish Mr. Angle would have stuck
- 24 around--they know exactly how many wells are in
- 25 Saunders County.

```
1 It's not hard to find, it's like on the
```

- 2 web, Lincoln well field, you can call them, you can
- 3 go to a meeting; it's easy to find that data. Make
- 4 them put it in there.
- 5 Soil types: Through this organization of
- 6 the EPA and whoever, they probably punched a million
- 7 holes in this area; if they don't know the soil
- 8 types by now they all should be fired.
- 9 It just -- it's crazy the way you guys
- 10 push around excuses; oh, we don't know this data or
- 11 we don't have this. It really makes you look bad to
- 12 anybody that understand what's going on around here.
- 13 And then there's a lot of things from the
- 14 Design Groundwater Model 3 that were addressed, and
- 15 they're still being addressed in No. 4; it's like
- 16 how long are you going to let people just keep going
- on and on and say, well, we'll work on this, we'll
- 18 work on this.
- I wish you guys could go to work for the
- 20 IRS, so that if I'm late, we'll just work on it. I
- 21 mean, it's -- this is -- you know, and you talk
- 22 about everything's on the web, and MUD puts things
- 23 on the web.
- 24 If you look at the front page, it says
- 25 right in there, you talk about, well, they're only

- 1 going to pump 50 million gallons a day. It says
- 2 right on there in big words, we have expanded our
- 3 pumping by 104 million gallons per day. It doesn't
- 4 say up to or once in a while; it says 104 million
- 5 gallons a day.
- 6 So run your simulations according to what
- 7 they say instead of, oh, you know, well, we'll be
- 8 good, we don't do this; they're going to do it.
- 9 And then, yeah, we talked about the August
- 10 drawdown versus the March drawdown. Corn doesn't
- 11 get real thirsty in March, it's still in the bag
- 12 someplace, so that's ridiculous to not use the
- 13 August and September drawdowns because the drawdowns
- 14 follow the pumping a little bit.
- Mr. Marquess said that the EPA can't
- 16 control what MUD does. You can control what a hog
- 17 farmer down here down the road five miles does, but
- 18 if MUD wants to suck all this stuff straight east
- 19 you're just going to say, gee, that's too bad.
- 20 SCOTT MARQUESS: I'll address that.
- 21 HAROLD KOLB: Okay.
- 22 SCOTT MARQUESS: I mean, we do not
- 23 regulate MUD under their permit, right?
- 24 HAROLD KOLB: Okay.
- 25 LYNN MOORER: Talk about all the ways you

- 1 can regulate them.
- 2 SCOTT MARQUESS: We have the ability to
- 3 influence the situation with these guys, with the
- 4 Corps, in terms of the clear up under the federal
- 5 facility agreement. We also have an indirect role
- 6 in affecting the overall relationship between MUD
- 7 and the plume.
- 8 And we will observe that entire -- and
- 9 it's not an isolated situation where there is no
- 10 relationship. We'll observe it, we'll see what's
- 11 going on, and when irregularities, problems arise,
- 12 we will bring them to the attention of everybody
- 13 involved who has a hand in remedying that situation.
- 14 HAROLD KOLB: So will you stop the pumping
- 15 if the plume moves? Will you tell these guys to
- 16 tell Omaha to stop the pumping because you're
- 17 contaminating -- they all worry about MUD's wells,
- 18 what about the 500 people or thousand or whatever
- 19 that live between where that pretty little line is
- 20 now, and the east; don't they count?
- 21 SCOTT MARQUESS: The intent of this
- 22 operation, the OU2 ROD says thou shalt not allow the
- 23 extent of this containment to expand basically
- 24 beyond what it is right now, and that's the criteria
- 25 that we intend to ensure is enforced.

```
1 HAROLD KOLB: So we have the EPA's word on
```

- 2 it that it will not go east of that, and if it is,
- 3 whoever causes it, will stop it from going east?
- 4 SCOTT MARQUESS: That's the intent, yes.
- 5 The plume is not supposed to move east, south,
- 6 north, west, anywhere beyond from where it is right
- 7 now. That's the ROD -- that's what the record of
- 8 decision says.
- 9 HAROLD KOLB: And in five years after they
- 10 start pumping, if that plume is moving a whole lot
- 11 more than your pretty little computers show -- your
- 12 little computers here say, you will make them stop
- 13 pumping?
- 14 SCOTT MARQUESS: We'll have to see why
- 15 it's -- you know, what's happening, why is it
- 16 happening? Has the containment system failed, is
- 17 there plume past to the south. There could be any
- 18 number of causes that would -- that may impact the
- 19 plume to expand.
- 20 HAROLD KOLB: Well, 104 million gallons a
- 21 day is probably a significant cause.
- 22 SCOTT MARQUESS: Well, if there's plume
- 23 movement to east then we'll have to take steps to
- 24 address it.
- 25 Yes.

1 LYNN MOORER: He asked you a yes or no

- 2 question, will you --
- 3 SCOTT MARQUESS: Well, this isn't a court
- 4 of law and it's not an inquisition, and I'll answer
- 5 the way I see fit, so thank you very much.
- 6 LYNN MOORER: Well, you're not answering
- 7 his question.
- 8 HAROLD KOLB: One more.
- 9 So, Jason, when this next groundwater
 - 10 model comes out as of -- I mean, MUD is supposed to
 - 11 put one out, what, every six months after they start
 - 12 going and every year until they start pumping if I
 - 13 remember right, and you guys are going to have a
 - 14 groundwater model out in September -- or later this
 - 15 year we'll say, so that all these concerns that are
 - 16 addressed in here from everybody else will totally
 - 17 be answered; is that -- are you going to answer all
 - 18 of these questions, and I mean, you have from now to
 - 19 September to get all this stuff digested and
 - 20 answered, so will you answer all those?
 - JASON LEIBBERT: Well, we're going to
 - 22 address the comments that were directed to us about
 - 23 the work that we've performed to date, and we're
 - 24 going to continue to do this, where we take what the
 - 25 model tells us, check it against what we actually

- 1 see in the real world, and then decide if that's a
- 2 good match or not a good match, and then go back and
- 3 put that information back in the model.
- 4 So what are we going to do between now and
- 5 September, we're going to do this cycle, we're going
- 6 to make our model better by using all the
- 7 information that's available to us, and addressing
- 8 the comments that we got in the past.
- 9 Now, what's MUD going to do every six
- 10 months or every -- you know, that's not for me to
- 11 say. If the permit says they have to do something
- 12 every six months, then I guess they'll do it every
- 13 six months. I mean, I don't know what they are.
- 14 HAROLD KOLB: I understand that, but you
- 15 can also -- you guys have a hammer as far as the
- 16 comments to what their water model says, and if they
- 17 continually do not put in the perimeters at the top
- 18 of those signs that says actual site information, if
- 19 they don't do that this time are you going to say,
- 20 hey, guys, clean up your act and we'll -- because
- 21 you can only consult with Omaha, are you going to
- 22 tell Omaha, get these guys to do something, and I --
- 23 I guess by -- if you're going to follow that little
- 24 circle, then actual site data will include number of
- 25 wells, perfect soil data, so there should be no

- 1 comments on any of that.
- 2 JASON LEIBBERT: Well, you know, if they
- 3 have the comments then we'll see how they respond to
- 4 those, and maybe their response will be satisfactory
- 5 and maybe it won't, and if it's not then -- then
- 6 maybe we -- they go through this exercise again
- 7 where they revise the model and update it and
- 8 release a new report.
- 9 HAROLD KOLB: So if ten years from now
- 10 we're still producing reports with old data and
- 11 they're pumping the valley dry and most likely
- 12 moving the contaminants, but we're still going
- 13 through data -- going through all the models with
- 14 old data.
- JASON LEIBBERT: Well, you can say that if
- 16 you want, but ten years from now we'll probably
- 17 still be in this cycle, yeah, because this cycle --
- 18 HAROLD KOLB: (Inaudible response) that
- 19 cycle all the time, but --
- JASON LEIBBERT: Yes.
- 21 HAROLD KOLB: -- you should start with the
- 22 very top one, I mean, actual site data, I mean, that
- 23 doesn't mean actual site data from ten years ago, it
- 24 means from right now.
- JASON LEIBBERT: Right.

```
JOHN KNAPP: My question -- John Knapp.
```

- 2 My question is kind of back to the -- on
- 3 the -- my initial question was, okay, if -- when you
- 4 run your model you compare your results on the
- 5 web -- static level in the wells.
- 6 So, for instance, right now you're saying
- 7 in MUD's model they did not use irrigation data and
- 8 current Lincoln well field data, and so their model
- 9 if it's -- evidently it's somewhat to your
- 10 satisfaction, is predicting these levels, okay.
- 11 This data wasn't in, so now -- now when
- 12 they come in, when they input this data into the
- 13 model, that means something else has to give to get
- 14 this -- this resolved, so which -- so you got a
- 15 whole bunch of variables there. You're talking
- 16 about conductivity, there --
- JASON LEIBBERT: A lot of them.
- JOHN KNAPP: A lot of them, so how do you
- 19 know which part of your model -- which one of the
- 20 other perimeters has failed?
- I mean, if I -- I can change -- if I
- 22 change the irrigation -- amount of water the
- 23 irrigation wells are pulling out, that means I
- 24 can $\operatorname{\mathsf{--}}$ I can adjust my conductivity so that this $\operatorname{\mathsf{--}}$
- 25 this fits, but I could also change my conductivity

- 1 and something else and it would still fit, so how
- 2 are you guys deciding which is the real -- whose --
- 3 which is the real thing that we've guessed -- you've
- 4 obviously guessed wrong if it's making a prediction
- 5 without this other data, and so how do you get the
- 6 right one corrected?
- 7 JASON LEIBBERT: It's a -- that's actually
- 8 a very good question.
- 9 There are a lot of variables, and if you
- 10 change any one of them, you kind of change the final
- 11 conclusion, you know, if you change this one, you
- 12 know, you get a different answer every time you
- 13 change one of the variables, so that's definitely
- 14 true.
- The way a modeler deals with that question
- 16 is you do a sensitivity analysis, and you look at
- 17 those variables and you -- you modify those
- 18 variables one at a time to see what sort of
- 19 different answers you get from the model, and
- 20 sometimes, you know, depending on, you know, what
- 21 you're trying to simulate in your model, the model
- 22 may be very sensitive to something like
- 23 conductivity.
- 24 If you change the conductivity just one
- 25 little bit you get this big different answer, you

- 1 know, it makes a huge change in what happens, and
- 2 then other times the model may not be very sensitive
- 3 to something.
- 4 You can change this perimeter and it
- 5 really doesn't change the bottom line, it really
- 6 don't really affect the bottom line, so the reason
- 7 you do that is to try to home in on what's really
- 8 gone on in the model, what's really important and
- 9 what are those critical factors that need to be done
- 10 just right in order for the model to calibrate well,
- 11 to get that good match to those static water levels.
- 12 You know, the practice is that anybody
- 13 that does a model would go through this kind of
- 14 analysis, you know, that's just -- you know, that's
- 15 what a good modeler does, but there's no -- there's
- 16 no cookbook or there's no recipe that tells you do
- 17 this, do this, do this, so it's -- there's
- 18 some subject -- subjectiveness in that process.
- 19 We did it in our RDGM model, and
- 20 Dr. Zurbuchen from DEQ gave us a lot of comments
- 21 about that. He didn't like the way we did it. He had
- 22 suggestions on how to do it better the next time, so
- 23 we're going to follow those suggestions.
- 24 MUD does it in their model. We had
- 25 comments about that, so it's one of those things

- 1 that you continue to work on is to try to get
- 2 those -- all those different variables down to a
- 3 range that does a good job of matching what you see
- 4 in the real world.
- 5 You know, it -- if you change one what
- 6 happens to the other ones and where do the changes
- 7 come from, it's a little more complicated than that
- 8 but you're on the right track, that if you change
- 9 one variable you can have a greatly different answer
- 10 in the end if the model is sensitive to that.
- 11 If the model is not sensitive to that then
- 12 maybe that basically tells you that either you did a
- 13 good job of estimating that perimeter or it tells
- 14 you that that perimeter is not as important as these
- 15 other ones, and that, you know, your time is better
- 16 spent focusing on those perimeters that the model is
- 17 very sensitive to and have the most effect and can
- 18 result in the most change when you -- when you do
- 19 that analysis.
- 20 So I'm not sure if that answer -- it --
- 21 it's not exactly an easy answer. You know, the
- 22 modeling is not simple, I wouldn't portray this as a
- 23 simple exercise.
- Dr. Zurbuchen, that's basically how he got
- 25 his Ph.D., is his modeling, and he's very

1 knowledgable about it and he's spent a lot of time

- 2 on it.
- 3 The guy that we have working for us, you
- 4 know, is at a similar level of Dr. Zurbuchen, he
- 5 doesn't have a Ph.D., but he's done a lot of work.
- 6 The number of people that are really
- 7 experts in modeling is actually pretty small. You
- 8 know, USGS has a lot of expertise, and there's a few
- 9 firms that have this kind of specialized capability,
- 10 so it's not a simple thing. Not anybody can just,
- 11 you know, start plugging away and come up with a
- 12 model that's good.
- So it's -- it's not a simple exercise is
- 14 what I'm trying to say and there's no easy answers
- 15 about the model, and, you know, if you remember some
- of the math that Greg had in his slides, you know,
- 17 that's what we're talking about here.
- 18 All these discussions about conductivity
- 19 and transmissivity and all that, we're talking about
- 20 the math, and not too many of us left in the room
- 21 here can actually follow all the math. I have a hard time
- 22 with the math myself. I like the computers that --
- 23 the programs that actually do the math for you.
- So, you know, manipulating those variables
- 25 is an important part of the process and it helps you

- 1 focus in on the variables that are the most
- 2 important, and it's one of those things you just
- 3 have to keep working at it.
- 4 You know, they've done it, they've gotten
- 5 comments from us, they've gotten comments -- I think
- 6 EPA commented about their sensitivity analysis, and
- 7 that's probably going to be a recurring thing.
- 8 LYNN MOORER: Mr. Leibbert, for the
- 9 record, for the comment -- the Kansas City Corps'
- 10 comments on the 2005 MUD model, who wrote the
- 11 comments on -- that were, you know, your Page 1 and
- 12 2, this addendum thing or the thing that's the
- 13 attachment, who wrote those comments?
- 14 JASON LEIBBERT: Kansas City District.
- 15 LYNN MOORER: No, who? Did you write
- 16 them?
- 17 JASON LEIBBERT: In consultation with
- 18 other people on our team, yeah, it was a group
- 19 effort.
- 20 LYNN MOORER: Could you identify those
- 21 persons?
- JASON LEIBBERT: Mazud Zaman --
- 23 LYNN MOORER: I can't hear you, I'm sorry.
- JASON LEIBBERT: Mazud Zaman, Matt Wilson,
- 25 Mary Lyle, myself, I think that's everybody.

1 LYNN MOORER: And who wrote the letter

- 2 that Mr. Anderson signed dated February 1st, that
- 3 cover letter to that?
- 4 GARTH ANDERSON: Once again, it's the --
- 5 Garth Anderson.
- It's a team effort; we write it and I sign
- 7 it, and that's the position of the Kansas City
- 8 District.
- 9 LYNN MOORER: So was it the same
- 10 individuals he named?
- 11 GARTH ANDERSON: Yes.
- 12 LYNN MOORER: And you were a part of the
- 13 team also, Mr. Anderson --
- 14 GARTH ANDERSON: I'm the project manager,
- 15 yes.
- 16 LYNN MOORER: -- in terms of the result of
- 17 this letter?
- 18 GARTH ANDERSON: I'm the project manager,
- 19 leader of the team that does the work on this site,
- 20 yes.
- 21 LYNN MOORER: I just asked if you were
- 22 part of the team that came up with these comments.
- 23 GARTH ANDERSON: Absolutely.
- 24 LYNN MOORER: All right. Then who were
- 25 the individuals who came up with the comments on --

1 for the Kansas City Corps for the 2004 MUD model?

- 2 JASON LEIBBERT: Basically the same group.
- 3 It was basically the same group in 2004.
- 4 LYNN MOORER: Is it all the exact same
- 5 individuals?
- 6 JASON LEIBBERT: In 2004 we had Vicki Murt
- 7 help us review that --
- 8 GARTH ANDERSON: I was not part --
- 9 Garth Anderson.
- 10 I was not a part of the project team in
- 11 2004.
- JASON LEIBBERT: I think that's the only
- 13 difference.
- 14 LYNN MOORER: So you add Vicki Murt, if
- 15 that's the name, to the team and subtract
- 16 Mr. Anderson and it's the same?
- JASON LEIBBERT: (Nodding head.)
- 18 LYNN MOORER: All right. Thank you.
- 19 GARTH ANDERSON: Well, it looks like
- 20 that's a wrap. I appreciate everyone sticking
- 21 around for so long. For those of you that are left,
- 22 for the eight of you that are left, there is another
- 23 RAB meeting on April 6th right here, 7 o'clock, also
- 24 an open house from 4 to 6 where we'll -- if you have
- 25 any specific questions, data, queries or what have

1 you, you can just talk to us one on one, we'll be here. Thank you. (10:55 p.m. - Adjournment.) ** ** ** **